Do you want to publish a course? Click here

Effect of Topology upon Relay Synchronization in Triplex Neuronal Networks

170   0   0.0 ( 0 )
 Added by Rico Berner
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Relay synchronization in complex networks is characterized by the synchronization of remote parts of the network due to their interaction via a relay. In multilayer networks, distant layers that are not connected directly can synchronize due to signal propagation via relay layers. In this work, we investigate relay synchronization of partial synchronization patterns like chimera states in three-layer networks of interacting FitzHugh-Nagumo oscillators. We demonstrate that the phenomenon of relay synchronization is robust to topological random inhomogeneities of small-world type in the layer networks. We show that including randomness in the connectivity structure either of the remote network layers, or of the relay layer, increases the range of interlayer coupling strength where relay synchronization can be observed.



rate research

Read More

In self-organized criticality (SOC) models, as well as in standard phase transitions, criticality is only present for vanishing driving external fields $h rightarrow 0$. Considering that this is rarely the case for natural systems, such a restriction poses a challenge to the explanatory power of these models. Besides that, in models of dissipative systems like earthquakes, forest fires and neuronal networks, there is no true critical behavior, as expressed in clean power laws obeying finite-size scaling, but a scenario called dirty criticality or self-organized quasi-criticality (SOqC). Here, we propose simple homeostatic mechanisms which promote self-organization of coupling strengths, gains, and firing thresholds in neuronal networks. We show that near criticality can be reached and sustained even in the presence of external inputs because the firing thresholds adapt to and cancel the inputs, a phenomenon similar to perfect adaptation in sensory systems. Similar mechanisms can be proposed for the couplings and local thresholds in spin systems and cellular automata, which could lead to applications in earthquake, forest fire, stellar flare, voting and epidemic modeling.
Relay (or remote) synchronization between two not directly connected oscillators in a network is an important feature allowing distant coordination. In this work, we report a systematic study of this phenomenon in multiplex networks, where inter-layer synchronization occurs between distant layers mediated by a relay layer that acts as a transmitter. We show that this transmission can be extended to higher order relay configurations, provided symmetry conditions are preserved. By first order perturbative analysis, we identify the dynamical and topological dependencies of relay synchronization in a multiplex. We find that the relay synchronization threshold is considerably reduced in a multiplex configuration, and that such synchronous state is mostly supported by the lower degree nodes of the outer layers, while hubs can be de-multiplexed without affecting overall coherence. Finally, we experimentally validated the analytical and numerical findings by means of a multiplex of three layers of electronic circuits.the analytical and numerical findings by means of a multiplex of three layers of electronic circuits.
We present a study on the selection of a variety of activity patterns among neurons that are connected in multiplex framework, with neurons on two layers with different functional couplings. With Hindmarsh-Rose model for the dynamics of single neurons, we analyze the possible patterns of dynamics in each layer separately, and report emergent patterns of activity like anti-phase oscillations in multi-clusters with phase regularities and enhanced amplitude and frequency with mixed mode oscillations when the connections are inhibitory. When they are multiplexed with neurons of one layer coupled with excitatory synaptic coupling and neurons of the other layer coupled with inhibitory synaptic coupling, we observe transfer or selection of interesting patterns of collective behaviour between the layers, inducing anti-phase oscillations and multi-cluster oscillations. While the revival of oscillations occurs in the layer with excitatory coupling, the transition from anti-phase to in-phase and vice versa is observed in the other layer with inhibitory synaptic coupling. We also discuss how the selection of these patterns can be controlled by tuning the intra-layer or inter-layer coupling strengths or increasing the range of non-local coupling. With one layer having electrical coupling while the other synaptic coupling of excitatory(inhibitory)type, we find in-phase(anti-phase) synchronized patterns of activity among neurons in both layers.
A scenario has recently been reported in which in order to stabilize complete synchronization of an oscillator network---a symmetric state---the symmetry of the system itself has to be broken by making the oscillators nonidentical. But how often does such behavior---which we term asymmetry-induced synchronization (AISync)---occur in oscillator networks? Here we present the first general scheme for constructing AISync systems and demonstrate that this behavior is the norm rather than the exception in a wide class of physical systems that can be seen as multilayer networks. Since a symmetric network in complete synchrony is the basic building block of cluster synchronization in more general networks, AISync should be common also in facilitating cluster synchronization by breaking the symmetry of the cluster subnetworks.
The phenomenon of explosive synchronization, which originates from hypersensitivity to small perturbation caused by some form of frustration prevailed in various physical and biological systems, has been shown to lead events of cascading failure of the power grid to chronic pain or epileptic seizure in the brain. Furthermore, networks provide a powerful model to understand and predict the properties of a diverse range of real-world complex systems. Recently, a multilayer network has been realized as a better suited framework for the representation of complex systems having multiple types of interactions among the same set of constituents. This article shows that by tuning the properties of one layer (network) of a multilayer network, one can regulate the dynamical behavior of another layer (network). By taking an example of a multiplex network comprising two different types of networked Kuramoto oscillators representing two different layers, this article attempts to provide a glimpse of opportunities and emerging phenomena multiplexing can induce which is otherwise not possible for a network in isolation. Here we consider explosive synchronization to demonstrate the potential of multilayer networks framework. To the end, we discuss several possible extensions of the model considered here by incorporating real-world properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا