The 1 + 2 dimensional Bogoyavlensky-Konopelchenko Equation is investigated for its solution and conservation laws using the Lie point symmetry analysis. In the recent past, certain work has been done describing the Lie point symmetries for the equation and this work seems to be incomplete (Ray S (2017) Compt. Math. Appl. 74, 1157). We obtained certain new symmetries and corresponding conservation laws. The travelling-wave solution and some other similarity solutions are studied.
Symmetries of a differential equations is one of the most important concepts in theory of differential equations and physics. One of the most prominent equations is KdV (Kortwege-de Vries) equation with application in shallow water theory. In this paper we are going to explain a particular method for finding symmetries of KdV equation, which is called Harrison method. Our tools in this method are Lie derivatives and differential forms, which will be discussed in the first section more precisely. In second chapter we will have some analysis on the solutions of KdV equation and we give a method, which is called first integral method for finding the solutions of KdV equation.
We carry out an extensive investigation of conservation laws and potential symmetries for the class of linear (1+1)-dimensional second-order parabolic equations. The group classification of this class is revised by employing admissible transformations, the notion of normalized classes of differential equations and the adjoint variational principle. All possible potential conservation laws are described completely. They are in fact exhausted by local conservation laws. For any equation from the above class the characteristic space of local conservation laws is isomorphic to the solution set of the adjoint equation. Effective criteria for the existence of potential symmetries are proposed. Their proofs involve a rather intricate interplay between different representations of potential systems, the notion of a potential equation associated with a tuple of characteristics, prolongation of the equivalence group to the whole potential frame and application of multiple dual Darboux transformations. Based on the tools developed, a preliminary analysis of generalized potential symmetries is carried out and then applied to substantiate our construction of potential systems. The simplest potential symmetries of the linear heat equation, which are associated with single conservation laws, are classified with respect to its point symmetry group. Equations possessing infinite series of potential symmetry algebras are studied in detail.
We prove that potential conservation laws have characteristics depending only on local variables if and only if they are induced by local conservation laws. Therefore, characteristics of pure potential conservation laws have to essentially depend on potential variables. This statement provides a significant generalization of results of the recent paper by Bluman, Cheviakov and Ivanova [J. Math. Phys., 2006, V.47, 113505]. Moreover, we present extensions to gauged potential systems, Abelian and general coverings and general foliated systems of differential equations. An example illustrating possible applications of proved statements is considered. A special version of the Hadamard lemma for fiber bundles and the notions of weighted jet spaces are proposed as new tools for the investigation of potential conservation laws.
We present a general algorithm constructing a discretization of a classical field theory from a Lagrangian. We prove a new discrete Noether theorem relating symmetries to conservation laws and an energy conservation theorem not based on any symmetry. This gives exact conservation laws for several discrete field theories: electrodynamics, gauge theory, Klein-Gordon and Dirac ones. In particular, we construct a conserved discrete energy-momentum tensor, approximating the continuum one at least for free fields. The theory is stated in topological terms, such as coboundary and products of cochains.
A long wave multi-dimensional approximation of shallow water waves is the bi-directional Benney-Luke equation. It yields the well-known Kadomtsev-Petviashvili equation in a quasi one-directional limit. A direct perturbation method is developed; it uses the underlying conservation laws to determine the slow evolution of parameters of two space dimensional, non-decaying web-type solutions to the Benney-Luke equation. New numerical simulations, based on windowing methods which are effective for non-decaying data, are presented. These simulations support the analytical results and elucidate the relationship between the Kadomtsev-Petviashvilli and the Benney-Luke equations and are also used to obtain amplitude information regarding particular web solutions. Additional dissipative perturbations to the Benney-Luke equation are also studied.
Amlan K. Halder
,Andronikos Paliathanasis
,P.G.L. Leach
.
(2020)
.
"Similarity solutions and Conservation laws for the Bogoyavlensky-Konopelchenko Equation by Lie point symmetries"
.
Amlan Kanti Halder Mr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا