The gauge dependence problem of alternative flow equation for the functional renormalization group is studied. It is shown that the effective two-particle irreducible effective action depends on gauges at any value of IR parameter $k$. The situation with gauge dependence is similar to the standard formulation based on the effective one-particle irreducible effective action.
We investigate the gauge symmetry and gauge fixing dependence properties of the effective average action for quantum gravity models of general form. Using the background field formalism and the standard BRST-based arguments, one can establish the special class of regulator functions that preserves the background field symmetry of the effective average action. Unfortunately, regardless the gauge symmetry is preserved at the quantum level, the non-invariance of the regulator action under the global BRST transformations leads to the gauge fixing dependence even under the use of the on-shell conditions.
This paper aims at presenting the first steps towards a formulation of the Exact Renormalization Group Equation in the Hopf algebra setting of Connes and Kreimer. It mostly deals with some algebraic preliminaries allowing to formulate perturbative renormalization within the theory of differential equations. The relation between renormalization, formulated as a change of boundary condition for a differential equation, and an algebraic Birkhoff decomposition for rooted trees is explicited.
We show how the renormalons emerge from the renormalization group equation with a priori no reference to any Feynman diagrams. The proof is rather given by recasting the renormalization group equation as a resurgent equation studied in the mathematical literature, which describes a function with an infinite number of singularities in the positive axis of the Borel plane. Consistency requires a one-to-one correspondence between the existence of such kind of equation and the actual (generalized) Borel resummation of the renormalons through a one-parameter transseries. Our finding suggests how non-perturbative contributions can affect the running couplings. We also discuss these concepts within the context of gauge theories, making use of the large number of flavor expansion.
Techniques based on $n$-particle irreducible effective actions can be used to study systems where perturbation theory does not apply. The main advantage, relative to other non-perturbative continuum methods, is that the hierarchy of integral equations that must be solved truncates at the level of the action, and no additional approximations are needed. The main problem with the method is renormalization, which until now could only be done at the lowest ($n$=2) level. In this paper we show how to obtain renormalized results from an $n$-particle irreducible effective action at any order. We consider a symmetric scalar theory with quartic coupling in four dimensions and show that the 4 loop 4-particle-irreducible calculation can be renormalized using a renormalization group method. The calculation involves one bare mass and one bare coupling constant which are introduced at the level of the Lagrangian, and cannot be done using any known method by introducing counterterms.
The gradient flow bears a close resemblance to the coarse graining, the guiding principle of the renormalization group (RG). In the case of scalar field theory, a precise connection has been made between the gradient flow and the RG flow of the Wilson action in the exact renormalization group (ERG) formalism. By imitating the structure of this connection, we propose an ERG differential equation that preserves manifest gauge invariance in Yang--Mills theory. Our construction in continuum theory can be extended to lattice gauge theory.