Do you want to publish a course? Click here

1 x 1 Rush Hour with Fixed Blocks is PSPACE-complete

80   0   0.0 ( 0 )
 Added by Erik Demaine
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Consider $n^2-1$ unit-square blocks in an $n times n$ square board, where each block is labeled as movable horizontally (only), movable vertically (only), or immovable -- a variation of Rush Hour with only $1 times 1$ cars and fixed blocks. We prove that it is PSPACE-complete to decide whether a given block can reach the left edge of the board, by reduction from Nondeterministic Constraint Logic via 2-color oriented Subway Shuffle. By contrast, polynomial-time algorithms are known for deciding whether a given block can be moved by one space, or when each block either is immovable or can move both horizontally and vertically. Our result answers a 15-year-old open problem by Tromp and Cilibrasi, and strengthens previous PSPACE-completeness results for Rush Hour with vertical $1 times 2$ and horizontal $2 times 1$ movable blocks and 4-color Subway Shuffle.



rate research

Read More

In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an $m times n$ grid of cells, where each cell possibly contains a clue among +, -, |. The goal is to partition the grid into disjoint rectangles, where every rectangle contains exactly one clue, rectangles containing + are square, rectangles containing - are strictly longer horizontally than vertically, rectangles containing | are strictly longer vertically than horizontally, and no four rectangles share a corner. We prove this puzzle NP-complete, establishing a Nikoli gap of 16 years. Along the way, we introduce a gadget framework for proving hardness of similar puzzles involving area coverage, and show that it applies to an existing NP-hardness proof for Spiral Galaxies. We also present a mathematical puzzle font for Tatamibari.
Exactly 20 years ago at MFCS, Demaine posed the open problem whether the game of Dots & Boxes is PSPACE-complete. Dots & Boxes has been studied extensively, with for instance a chapter in Berlekamp et al. Winning Ways for Your Mathematical Plays, a whole book on the game The Dots and Boxes Game: Sophisticated Childs Play by Berlekamp, and numerous articles in the Games of No Chance series. While known to be NP-hard, the question of its complexity remained open. We resolve this question, proving that the game is PSPACE-complete by a reduction from a game played on propositional formulas.
We show that the decision problem of determining whether a given (abstract simplicial) $k$-complex has a geometric embedding in $mathbb R^d$ is complete for the Existential Theory of the Reals for all $dgeq 3$ and $kin{d-1,d}$. This implies that the problem is polynomial time equivalent to determining whether a polynomial equation system has a real root. Moreover, this implies NP-hardness and constitutes the first hardness results for the algorithmic problem of geometric embedding (abstract simplicial) complexes.
We prove PSPACE-completeness of all but one problem in a large space of pulling-block problems where the goal is for the agent to reach a target destination. The problems are parameterized by whether pulling is optional, the number of blocks which can be pulled simultaneously, whether there are fixed blocks or thin walls, and whether there is gravity. We show NP-hardness for the remaining problem, Pull?-1FG (optional pulling, strength 1, fixed blocks, with gravity).
We prove that Strings-and-Coins -- the combinatorial two-player game generalizing the dual of Dots-and-Boxes -- is strongly PSPACE-complete on multigraphs. This result improves the best previous result, NP-hardness, argued in Winning Ways. Our result also applies to the Nimstring variant, where the winner is determined by normal play; indeed, one step in our reduction is the standard reduction (also from Winning Ways) from Nimstring to Strings-and-Coins.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا