Do you want to publish a course? Click here

Storing and retrieving wavefronts with resistive temporal memory

77   0   0.0 ( 0 )
 Added by Advait Madhavan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We extend the reach of temporal computing schemes by developing a memory for multi-channel temporal patterns or wavefronts. This temporal memory re-purposes conventional one-transistor-one-resistor (1T1R) memristor crossbars for use in an arrival-time coded, single-event-per-wire temporal computing environment. The memristor resistances and the associated circuit capacitances provide the necessary time constants, enabling the memory array to store and retrieve wavefronts. The retrieval operation of such a memory is naturally in the temporal domain and the resulting wavefronts can be used to trigger time-domain computations. While recording the wavefronts can be done using standard digital techniques, that approach has substantial translation costs between temporal and digital domains. To avoid these costs, we propose a spike timing dependent plasticity (STDP) inspired wavefront recording scheme to capture incoming wavefronts. We simulate these designs with experimentally validated memristor models and analyze the effects of memristor non-idealities on the operation of such a memory.



rate research

Read More

A unique set of characteristics are packed in emerging nonvolatile reduction-oxidation (redox)-based resistive switching memories (ReRAMs) such as their underlying stochastic switching processes alongside their intrinsic highly nonlinear current-voltage characteristic, which in addition to known nano-fabrication process variation make them a promising candidate for the next generation of low-cost, low-power, tiny and secure Physically Unclonable Functions (PUFs). This paper takes advantage of this otherwise disadvantageous ReRAM feature using a combination of novel architectural and peripheral circuitry. We present a physical one-way function, nonlinear resistive Physical Unclonable Function (nrPUF), potentially applicable in variety of cyber-physical security applications given its performance characteristics. We experimentally verified performance of Valency Change Mechanism (VCM)-based ReRAM in nano-fabricated crossbar arrays across multiple dies and runs. In addition to a massive pool of Challenge-Response Pairs (CRPs), using a combination of experimental and simulation, our proposed PUF shows a reliability of 98.67%, a uniqueness of 49.85%, a diffuseness of 49.86%, a uniformity of 47.28%, and a bit-aliasing of 47.48%.
The design of systems implementing low precision neural networks with emerging memories such as resistive random access memory (RRAM) is a major lead for reducing the energy consumption of artificial intelligence (AI). Multiple works have for example proposed in-memory architectures to implement low power binarized neural networks. These simple neural networks, where synaptic weights and neuronal activations assume binary values, can indeed approach state-of-the-art performance on vision tasks. In this work, we revisit one of these architectures where synapses are implemented in a differential fashion to reduce bit errors, and synaptic weights are read using precharge sense amplifiers. Based on experimental measurements on a hybrid 130 nm CMOS/RRAM chip and on circuit simulation, we show that the same memory array architecture can be used to implement ternary weights instead of binary weights, and that this technique is particularly appropriate if the sense amplifier is operated in near-threshold regime. We also show based on neural network simulation on the CIFAR-10 image recognition task that going from binary to ternary neural networks significantly increases neural network performance. These results highlight that AI circuits function may sometimes be revisited when operated in low power regimes.
The brain performs intelligent tasks with extremely low energy consumption. This work takes inspiration from two strategies used by the brain to achieve this energy efficiency: the absence of separation between computing and memory functions, and the reliance on low precision computation. The emergence of resistive memory technologies indeed provides an opportunity to co-integrate tightly logic and memory in hardware. In parallel, the recently proposed concept of Binarized Neural Network, where multiplications are replaced by exclusive NOR (XNOR) logic gates, offers a way to implement artificial intelligence using very low precision computation. In this work, we therefore propose a strategy to implement low energy Binarized Neural Networks, which employs brain-inspired concepts, while retaining energy benefits from digital electronics. We design, fabricate and test a memory array, including periphery and sensing circuits, optimized for this in-memory computing scheme. Our circuit employs hafnium oxide resistive memory integrated in the back end of line of a 130 nanometer CMOS process, in a two transistors - two resistors cell, which allows performing the exclusive NOR operations of the neural network directly within the sense amplifiers. We show, based on extensive electrical measurements, that our design allows reducing the amount of bit errors on the synaptic weights, without the use of formal error correcting codes. We design a whole system using this memory array. We show on standard machine learning tasks (MNIST, CIFAR-10, ImageNet and an ECG task) that the system has an inherent resilience to bit errors. We evidence that its energy consumption is attractive compared to more standard approaches, and that it can use the memory devices in regimes where they exhibit particularly low programming energy and high endurance.
Race logic, an arrival-time-coded logic family, has demonstrated energy and performance improvements for applications ranging from dynamic programming to machine learning. However, the ad hoc mappings of algorithms into hardware result in custom architectures making them difficult to generalize. We systematize the development of race logic by associating it with the mathematical field called tropical algebra. This association between the mathematical primitives of tropical algebra and generalized race logic computations guides the design of temporally coded tropical circuits. It also serves as a framework for expressing high level timing-based algorithms. This abstraction, when combined with temporal memory, allows for the systematic generalization of race logic by making it possible to partition feed-forward computations into stages and organizing them into a state machine. We leverage analog memristor-based temporal memories to design a such a state machine that operates purely on time-coded wavefronts. We implement a version of Dijkstras algorithm to evaluate this temporal state machine. This demonstration shows the promise of expanding the expressibility of temporal computing to enable it to deliver significant energy and throughput advantages.
89 - Anita Mehta 2018
We first review traditional approaches to memory storage and formation, drawing on the literature of quantitative neuroscience as well as statistical physics. These have generally focused on the fast dynamics of neurons; however, there is now an increasing emphasis on the slow dynamics of synapses, whose weight changes are held to be responsible for memory storage. An important first step in this direction was taken in the context of Fusis cascade model, where complex synaptic architectures were invoked, in particular, to store long-term memories. No explicit synaptic dynamics were, however, invoked in that work. These were recently incorporated theoretically using the techniques used in agent-based modelling, and subsequently, models of competing and cooperating synapses were formulated. It was found that the key to the storage of long-term memories lay in the competitive dynamics of synapses. In this review, we focus on models of synaptic competition and cooperation, and look at the outstanding challenges that remain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا