Do you want to publish a course? Click here

Bridging transitions and capillary forces for colloids in a slit

64   0   0.0 ( 0 )
 Added by Svyatoslav Kondrat
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Capillary bridges can form between colloids immersed in a two phase fluid, e.g., in a binary liquid mixture, if the surface of the colloids prefers the species other than the one favored in the bulk liquid. Here, we study the formation of liquid bridges induced by confining colloids to a slit, with the slit walls having a preference opposite to the one of the colloid surface. Using mean field theory, we show that there is a line of first-order phase transitions between the bridge and the no-bridge states, which ends at a critical point. By decreasing the slit width, this critical point is shifted towards smaller separations between the colloids. However, at very small separations, and far from criticality, we observe only a minor influence of the slit width on the location of the transition. Monte Carlo simulations of the Ising model, which mimics incompressible binary liquid mixtures, confirm the occurrence of the bridging transitions, as manifested by the appearance of bistable regions where both the bridge and the no-bridge configurations are (meta)stable. Interestingly, we find no bistability in the case of small colloids, but we observe a sharpening of the transition when the colloid size increases. In addition, we demonstrate that the capillary force acting between the colloids can depend sensitively on the slit width, and varies drastically with temperature, thus achieving strengths orders of magnitude higher than at criticality of the fluid.



rate research

Read More

We present a second-order accurate method to include arbitrary distributions of force densities in the lattice Boltzmann formulation of hydrodynamics. Our method may be used to represent singular force densities arising either from momentum-conserving internal forces or from external forces which do not conserve momentum. We validate our method with several examples involving point forces and find excellent agreement with analytical results. A minimal model for dilute sedimenting particles is presented using the method which promises a substantial gain in computational efficiency.
We study the normal and lateral effective critical Casimir forces acting on a spherical colloid immersed in a critical binary solvent and close to a chemically structured substrate with alternating adsorption preference. We calculate the universal scaling function for the corresponding potential and compare our results with recent experimental data [Soyka F., Zvyagolskaya O., Hertlein C., Helden L., and Bechinger C., Phys. Rev. Lett., 101, 208301 (2008)]. The experimental potentials are properly captured by our predictions only by accounting for geometrical details of the substrate pattern for which, according to our theory, critical Casimir forces turn out to be a sensitive probe.
Interface localization-delocalization transitions (ILDT) occur in two-phase fluids confined in a slit with competing preferences of the walls for the two fluid phases. At low temperatures the interface between the two phases is localized at one of the walls. Upon increasing temperature it unbinds. Although intensively studied theoretically and computationally, such transitions have not yet been observed experimentally due to severe challenges in resolving fine details of the fluid structure. Here, using mean field theory and Monte Carlo simulations of the Ising model, we propose to detect these ILDT by using colloids. We show that the finite-size and fluctuation induced force acting on a colloid confined in such a system experiences a vivid change if, upon lowering the temperature, the interface localizes at one of the walls. This change can serve as a more easily accessible experimental indicator of the transition.
The movement of the particles in a capillary electrophoretic system under electroosmotic flow was modeled using Monte Carlo simulation with Metropolis algorithm. Two different cases, with repulsive and attractive interactions between molecules were taken into consideration. The simulation was done using a spin-like system where the interactions between the nearest and second closest neighbors were considered in two separate steps of the modeling study. A total of 20 different cases with different rate of interactions for both repulsive and attractive interactions were modeled. The movement of the particles through the capillary is defined as current. At a low interaction level between molecules, a regular electroosmotic flow is obtained, on the other hand, with increasing interactions between molecules the current shows a phase transition behavior. The results also show that a modular electroosmotic flow can be obtained for separations by tuning the ratio between molecular interactions and electric field strength.
In this article, we demonstrate a method for inducing reversible crystal-to-crystal transitions in binary mixtures of soft colloidal particles. Through a controlled decrease of salinity and increasingly dominating electrostatic interactions, a single sample is shown to reversibly organize into entropic crystals, electrostatic attraction-dominated crystals or aggregated gels, which we quantify using microscopy and image analysis. We furthermore analyze crystalline structures with bond order analysis to discern between two crystal phases. We observe the different phases using a sample holder geometry that allows both in situ salinity control and imaging through Confocal Laser Scanning Microscopy, and apply a synthesis method producing particles with high resolvability in microscopy with control over particle size. The particle softness provides for an enhanced crystallization speed, while altering the re-entrant melting behavior as compared to hard sphere systems. This work thus provides several tools for use in the reproducible manufacture and analysis of binary colloidal crystals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا