Do you want to publish a course? Click here

EeV Astrophysical neutrinos from FSRQs?

50   0   0.0 ( 0 )
 Added by Chiara Righi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Flat Spectrum Radio Quasars (FSRQ) are the most powerful blazars in the gamma-ray band. Although they are supposed to be good candidates in producing high energy neutrinos, no secure detection of FSRQs has been obtained up to now, except for a possible case of PKS B1424-418. In this work, we compute the expected flux of high energy neutrinos from FSRQs using standard assumptions for the properties of the radiation fields filling the regions surrounding the central supermassive black hole. We obtain as a result that high energy neutrinos are naturally expected from FSRQs in the sub-EeV-EeV energy range and not at PeV energies. This justifies the non-observation of neutrinos from FSRQs with the present technology, since only neutrinos below 10 PeV have been observed. We found that for a non-negligible range of the parameters the cumulative flux from FSRQs is comparable to or even exceeds the expected cosmogenic neutrino flux. This result is intriguing and highlights the importance to disentangle these point-source emissions from the diffuse cosmogenic background.

rate research

Read More

The standard perception is that the detection of high energy (TeV energies and above) neutrinos from an astrophysical object is a conclusive evidence for the presence of hadronic cosmic rays at the source. In the present work we demonstrate that TeV neutrinos can also be originated from energetic electrons via electromagnetic interactions in different potential cosmic ray sources with flux levels comparable to that of the hadronic originated neutrinos at high energies. Our findings thus imply that at least a part of the neutrinos observed by Icecube observatory may be originated from energetic electrons. The present analysis further suggests that only a combine study of TeV gamma rays and neutrinos over a wide energy range from an astrophysical object can unambiguously identify the nature of their parents, hadrons or leptons.
Blazars are potential candidates of cosmic-ray acceleration up to ultrahigh energies ($Egtrsim10^{18}$ eV). For an efficient cosmic-ray injection from blazars, $pgamma$ collisions with the extragalactic background light (EBL) and cosmic microwave background (CMB) can produce neutrino spectrum peaks near PeV and EeV energies, respectively. We analyze the contribution of these neutrinos to the diffuse background measured by the IceCube neutrino observatory. The fraction of neutrino luminosity originating from individual redshift ranges is calculated using the distribution of BL Lacs and FSRQs provided in the textit{Fermi}-LAT 4LAC catalog. Furthermore, we use a luminosity dependent density evolution to find the neutrino flux from unresolved blazars. The results obtained in our model indicate that as much as $approx10%$ of the flux upper bound at a few PeV energies can arise from cosmic-ray interactions on EBL. The same interactions will also produce secondary electrons and photons, initiating electromagnetic cascades. The resultant photon spectrum is limited by the isotropic diffuse $gamma$-ray flux measured between 100 MeV and 820 GeV. The latter, together with the observed cosmic-ray flux at $E>10^{16.5}$ eV, can constrain the baryonic loading factor depending on the maximum cosmic-ray acceleration energy.
Neutrinos offer a window to physics beyond the Standard Model. In particular, high-energy astrophysical neutrinos, with TeV-PeV energies, may provide evidence of new, secret neutrino-neutrino interactions that are stronger than ordinary weak interactions. During their propagation over cosmological distances, high-energy neutrinos could interact with the cosmic neutrino background via secret interactions, developing characteristic energy-dependent features in their observed energy distribution. For the first time, we look for signatures of secret neutrino interactions in the diffuse flux of high-energy astrophysical neutrinos, using 6 years of publicly available IceCube High Energy Starting Events (HESE). We find no significant evidence for secret neutrino interactions, but place competitive upper limits on the coupling strength of the new mediator through which they occur, in the mediator mass range of 1-100 MeV.
Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere dataset consisting primarily of nu_e and nu_tau charged current and neutral current (cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35,000 muon neutrinos from the Northern sky was extracted from data taken during 659.5 days of livetime recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in the Earths atmosphere, the highest energy events are inconsistent with a hypothesis of solely terrestrial origin at 3.7 sigma significance. These neutrinos can, however, be explained by an astrophysical flux per neutrino flavor at a level of Phi(E_nu) = 9.9^{+3.9}_{-3.4} times 10^{-19} GeV^{-1} cm^{-2} sr^{-1} s^{-1} ({E_nu / 100 TeV})^{-2}, consistent with IceCubes Southern Hemisphere dominated result. Additionally, a fit for an astrophysical flux with an arbitrary spectral index was performed. We find a spectral index of 2.2^{+0.2}_{-0.2}, which is also in good agreement with the Southern Hemisphere result.
The flavor composition of high-energy astrophysical neutrinos can reveal the physics governing their production, propagation, and interaction. The IceCube Collaboration has published the first experimental determination of the ratio of the flux in each flavor to the total. We present, as a theoretical counterpart, new results for the allowed ranges of flavor ratios at Earth for arbitrary flavor ratios in the sources. Our results will allow IceCube to more quickly identify when their data imply standard physics, a general class of new physics with arbitrary (incoherent) combinations of mass eigenstates, or new physics that goes beyond that, e.g., with terms that dominate the Hamiltonian at high energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا