Do you want to publish a course? Click here

PeV-EeV neutrinos from gamma-ray blazars due to ultrahigh-energy cosmic-ray propagation

133   0   0.0 ( 0 )
 Added by Saikat Das
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Blazars are potential candidates of cosmic-ray acceleration up to ultrahigh energies ($Egtrsim10^{18}$ eV). For an efficient cosmic-ray injection from blazars, $pgamma$ collisions with the extragalactic background light (EBL) and cosmic microwave background (CMB) can produce neutrino spectrum peaks near PeV and EeV energies, respectively. We analyze the contribution of these neutrinos to the diffuse background measured by the IceCube neutrino observatory. The fraction of neutrino luminosity originating from individual redshift ranges is calculated using the distribution of BL Lacs and FSRQs provided in the textit{Fermi}-LAT 4LAC catalog. Furthermore, we use a luminosity dependent density evolution to find the neutrino flux from unresolved blazars. The results obtained in our model indicate that as much as $approx10%$ of the flux upper bound at a few PeV energies can arise from cosmic-ray interactions on EBL. The same interactions will also produce secondary electrons and photons, initiating electromagnetic cascades. The resultant photon spectrum is limited by the isotropic diffuse $gamma$-ray flux measured between 100 MeV and 820 GeV. The latter, together with the observed cosmic-ray flux at $E>10^{16.5}$ eV, can constrain the baryonic loading factor depending on the maximum cosmic-ray acceleration energy.



rate research

Read More

The Tibet ASgamma experiment just reported their measurement of sub-PeV diffuse gamma ray emission from the Galactic disk, with the highest energy up to 957 TeV. These gamma-rays are most likely the hadronic origin by cosmic ray interaction with interstellar gas in the Galaxy. This measurement provides direct evidence to the hypothesis that the Galactic cosmic rays can be accelerated beyond PeV energies. In this work, we try to explain the sub-PeV diffuse gamma-ray spectrum within cosmic rays diffusive propagation model. We find there is a tension between the sub-PeV diffuse gamma rays and the local cosmic ray spectrum. To describe the sub-PeV diffuse gamma-ray flux, it generally requires larger local cosmic-ray flux than measurement in the knee region. We further calculate the PeV neutrino flux from the cosmic ray propagation model. Even all of these sub-PeV diffuse gamma rays originate from the propagation, the Galactic neutrinos only account for less than ~15% of observed flux, most of which are still from extragalactic sources.
The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh-energy cosmic rays. Starting from rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ~10^18 eV, where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.
We propose a novel model to produce ultrahigh-energy cosmic-rays (UHECRs) in gamma-ray burst jets. After the prompt gamma-ray emission, hydrodynamical turbulence is excited in the GRB jets at or before the afterglow phase. The mildly relativistic turbulence stochastically accelerates protons. The acceleration rate is much slower than the usual first-order shock acceleration rate, but in this case it can be energy-independent. The resultant UHECR spectrum is so hard that the bulk energy is concentrated in the highest energy range, resulting in a moderate requirement for the typical cosmic ray luminosity of $sim 10^{53.5}~mbox{erg}~mbox{s}^{-1}$. In this model, the secondary gamma-ray and neutrino emissions initiated by photopion production are significantly suppressed. Although the UHECR spectrum at injection shows a curved feature, this does not conflict with the observed UHECR spectral shape. The cosmogenic neutrino spectrum in the $10^{17}$--$10^{18}$ eV range becomes distinctively hard in this model, which may be verified by future observations.
The origin of ultrahigh energy cosmic rays (UHECRs) is an open question. In this proceeding, we first review the general physical requirements that a source must meet for acceleration to 10-100 EeV, including the consideration that the shock is not highly relativistic. We show that shocks in the backflows of radio galaxies can meet these requirements. We discuss a model in which giant-lobed radio galaxies such as Centaurus A and Fornax A act as slowly-leaking UHECR reservoirs, with the UHECRs being accelerated during a more powerful past episode. We also show that Centaurus A, Fornax A and other radio galaxies may explain the observed anisotropies in data from the Pierre Auger Observatory, before examining some of the difficulties in associating UHECR anisotropies with astrophysical sources.
Ultrahigh energy protons and nuclei from extragalactic cosmic ray sources initiate intergalactic electromagnetic cascades, resulting in observable fluxes of $gamma$-rays in the GeV-TeV energy domain. The total spectrum of such cascade $gamma$-rays of hadronic nature is significantly harder than the one usually expected from blazars. The spectra of some sources known as extreme TeV blazars could be well-described by this intergalactic hadronic cascade model (IHCM). We calculate the shape of the observable point-like spectrum, as well as the observable angular distibution of $gamma$-rays, for the first time taking into account the effect of primary proton deflection in filaments and galaxy clusters of the extragalactic magnetic field assuming the model of Dolag et al. (2005). We present estimates of the width of the observable $gamma$-ray angular distribution derived from simple geometrical considerations. We also employ a hybrid code to compute the observable spectral and angular distributions of $gamma$-rays. The observable point-like spectrum at multi-TeV energies is much softer than the one averaged over all values of the observable angle. The presence of a high-energy cutoff in the observable spectra of extreme TeV blazars in the framework of the IHCM could significantly facilitate future searches of new physics processes that enhance the apparent $gamma$-ray transparency of the Universe (for instance, $gamma rightarrow ALP$ oscillations). The width of the observable angular distribution is greater than or comparable to the extent of the point spread function of next-generation $gamma$-ray telescopes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا