No Arabic abstract
High-spin rotational bands in rare-earth Er ($Z=68$), Tm ($Z=69$) and Yb ($Z=70$) isotopes are investigated by three different nuclear models. These are (i) the cranked relativistic Hartree-Bogoliubov (CRHB) approach with approximate particle number projection by means of the Lipkin-Nogami (LN) method, (ii) the cranking covariant density functional theory (CDFT) with pairing correlations treated by a shell-model-like approach (SLAP) or the so called particle-number conserving (PNC) method, and (iii) cranked shell model (CSM) based on the Nilsson potential with pairing correlations treated by the PNC method. A detailed comparison between these three models in the description of the ground state rotational bands of even-even Er and Yb isotopes is performed. The similarities and differences between these models in the description of the moments of inertia, the features of band crossings, equilibrium deformations and pairing energies of even-even nuclei under study are discussed. These quantities are considered as a function of rotational frequency and proton and neutron numbers. The changes in the properties of the first band crossings with increasing neutron number in this mass region are investigated. On average, a comparable accuracy of the description of available experimental data is achieved in these models. However, the differences between model predictions become larger above the first band crossings. Because of time-consuming nature of numerical calculations in the CDFT-based models, a systematic study of the rotational properties of both ground state and excited state bands in odd-mass Tm nuclei is carried out only by the PNC-SCM. With few exceptions, the rotational properties of experimental 1-quasiparticle and 3-quasiparticle bands in $^{165,167,169,171}$Tm are reproduced reasonably well.
We analyze the localization properties of two-body correlations induced by pairing in the framework of relativistic mean field (RMF) models. The spatial properties of two-body correlations are studied for the pairing tensor in coordinate space and for the Cooper pair wave function. The calculations are performed both with Relativistic-Hatree-Bogoliubov (RHB) and RMF+Projected-BCS (PBCS) models and taking as examples the nuclei $^{66}$Ni, $^{124}$Sn and $^{200}$Pb. It is shown that the coherence length have the same pattern as in previous non-relativistic HFB calculations, i.e., it is maximum in the interior of the nucleus and drops to a minimum in the surface region. In the framework of RMF+PBCS we have also analysed, for the particular case of $^{120}$Sn, the dependence of the coherence length on the intensity of the pairing force. This analysis indicates that pairing is reducing the coherence length by about 25-30 $%$ compared to the RMF limit.
The phase transition of nuclei to increasing angular momentum (or spin) and excitation energy is one of the most fundamental topics of nuclear structure research. The odd-N nuclei with A equal 160 are widely considered belonging to the well-deformed region, and their excitation spectra are energetically favored to exhibit the rotational characteristics. In the present work, however, there is evidence indicating that the nuclei can evolve from rotation to vibration along the yrast lines while increasing spin. The simple method, named as E-Gamma Over Spin (E-GOS) curves, would be used to discern the evolution from rotational to vibrational structure in nuclei as a function of spin. In addition, in order to get the insight into the rotational-like properties of nuclei, theoretical calculations have been performed for the yrast bands of the odd-A rare-earth nuclei using the total Routhian surfaces (TRS) model. The TRS plots indicate that the 165Yb and 157Dy isotopes have stable prolate shapes at low spin states. At higher rotational frequency (larger than 0.50 MeV), a distinct decrease in the quadrupole deformation is predicted by the calculations, and the isotopes becomes rigid in the gamma deformation.
A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-SH. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations $beta_{2}$ obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N=82, the RMF theory predicts the well-known onset of prolate deformation at about N=88, which saturates at about N=102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data.
We calculate the energy per particle of symmetric nuclear matter and pure neutron matter using the microscopic many-body Brueckner-Hartree-Fock (BHF) approach and employing the Argonne V18 (AV18) nucleon-nucleon (NN) potential supplemented with two different three-nucleon force models recently constructed to reproduce the binding energy of $^3$H, $^3$He and $^4$He nuclei as well as the neutron-deuteron doublet scattering length. We find that none of these new three-nucleon force models is able to reproduce simultaneously the empirical saturation point of symmetric nuclear matter and the properties of three- and four-nucleon systems.
We make a systematic study of Li isotopes (A=9,10,11) in the tensor optimized shell model for 9Li and treat the additional valence neutrons in the cluster model approach by taking into account the Pauli-blocking effect caused by the tensor and pairing correlations. We describe the tensor correlations in 9Li fully in the tensor-optimized shell model, where the variation of the size parameters of the single particle orbits is essential for getting strong tensor correlations. We have shown in our previous study that in $^{10,11}$Li the tensor and pairing correlations in 9Li are Pauli-blocked by additional valence neutrons, which make the p-shell configurations pushed up in energy. As a result, the $s^2$ valence neutron component increases to reveal the halo structure of 11Li and the inversion phenomenon of the single particle spectrum in 10Li arises. Following the previous study, we demonstrate the reliability of our framework by performing a detailed systematic analysis of the structures of $^{9,10,11}$Li, such as the charge radius, the spatial correlation of halo neutrons of 11Li and the electromagnetic properties of Li isotopes. The detailed effects of the Pauli-blocking on the spectroscopic properties of $^{10,11}$Li are also discussed. It is found that the blocking acts strongly for the 11Li ground state rather than for 10Li and for the dipole excited states of 11Li, which is mainly caused by the interplay between the tensor correlation in 9Li and the halo neutrons. The results obtained in these analyses clearly show that the inert core assumption of 9Li is not realistic to explain the anomalous structures observed in $^{10,11}$Li. For the dipole excitation spectrum of 11Li, the effect of the final state interactions is discussed in terms of the dipole strength function.