Do you want to publish a course? Click here

A Scattering Amplitude in Conformal Field Theory

121   0   0.0 ( 0 )
 Added by Marc Gillioz
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We define form factors and scattering amplitudes in Conformal Field Theory as the coefficient of the singularity of the Fourier transform of time-ordered correlation functions, as $p^2 to 0$. In particular, we study a form factor $F(s,t,u)$ obtained from a four-point function of identical scalar primary operators. We show that $F$ is crossing symmetric, analytic and it has a partial wave expansion. We illustrate our findings in the 3d Ising model, perturbative fixed points and holographic CFTs.



rate research

Read More

We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.
138 - G.P. Korchemsky 2018
We compute the leading-color contribution to four-particle scattering amplitude in four-dimensional conformal fishnet theory that arises as a special limit of $gamma$-deformed $mathcal N=4$ SYM. We show that the single-trace partial amplitude is protected from quantum corrections whereas the double-trace partial amplitude is a nontrivial infrared finite function of the ratio of Mandelstam invariants. Applying the Lehmann--Symanzik--Zimmerman reduction procedure to the known expression of a four-point correlation function in the fishnet theory, we derive a new representation for this function that is valid for arbitrary coupling. We use this representation to find the asymptotic behavior of the double-trace amplitude in the high-energy limit and to compute the corresponding exact Regge trajectories. We verify that at weak coupling the expressions obtained are in agreement with an explicit five-loop calculation.
Krylov complexity, or K-complexity for short, has recently emerged as a new probe of chaos in quantum systems. It is a measure of operator growth in Krylov space, which conjecturally bounds the operator growth measured by the out of time ordered correlator (OTOC). We study Krylov complexity in conformal field theories by considering arbitrary 2d CFTs, free field, and holographic models. We find that the bound on OTOC provided by Krylov complexity reduces to bound on chaos of Maldacena, Shenker, and Stanford. In all considered examples including free and rational CFTs Krylov complexity grows exponentially, in stark violation of the expectation that exponential growth signifies chaos.
In the AdS$_3$/CFT$_2$ correspondence, we find some conformal field theory (CFT) states that have no bulk description by the Ba~nados geometry. We elaborate the constraints for a CFT state to be geometric, i.e., having a dual Ba~nados metric, by comparing the order of central charge of the entanglement/Renyi entropy obtained respectively from the holographic method and the replica trick in CFT. We find that the geometric CFT states fulfill Bohrs correspondence principle by reducing the quantum KdV hierarchy to its classical counterpart. We call the CFT states that satisfy the geometric constraints geometric states, and otherwise non-geometric states. We give examples of both the geometric and non-geometric states, with the latter case including the superposition states and descendant states.
65 - Chang Liu , David A. Lowe 2018
The onset of quantum chaos in quantum field theory may be studied using out-of-time-order correlators at finite temperature. Recent work argued that a timescale logarithmic in the central charge emerged in the context of two-dimensional conformal field theories, provided the intermediate channel was dominated by the Virasoro identity block. This suggests a wide class of conformal field theories exhibit a version of fast scrambling. In the present work we study this idea in more detail. We begin by clarifying to what extent correlators of wavepackets built out of superpositions of primary operators may be used to quantify quantum scrambling. Subject to certain caveats, these results concur with previous work. We then go on to study the contribution of intermediate states beyond the Virasoro identity block. We find that at late times, time-ordered correlators exhibit a familiar decoupling theorem, suppressing the contribution of higher dimension operators. However this is no longer true of the out-of-time-order correlators relevant for the discussion of quantum chaos. We compute the contributions of these conformal blocks to the relevant correlators, and find they are able to dominate in many interesting limits. Interpreting these results in the context of holographic models of quantum gravity, sheds new light on the black hole information problem by exhibiting a class of correlators where bulk effective field theory does not predict its own demise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا