Do you want to publish a course? Click here

Exact scattering amplitudes in conformal fishnet theory

139   0   0.0 ( 0 )
 Added by Gregory Korchemsky
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We compute the leading-color contribution to four-particle scattering amplitude in four-dimensional conformal fishnet theory that arises as a special limit of $gamma$-deformed $mathcal N=4$ SYM. We show that the single-trace partial amplitude is protected from quantum corrections whereas the double-trace partial amplitude is a nontrivial infrared finite function of the ratio of Mandelstam invariants. Applying the Lehmann--Symanzik--Zimmerman reduction procedure to the known expression of a four-point correlation function in the fishnet theory, we derive a new representation for this function that is valid for arbitrary coupling. We use this representation to find the asymptotic behavior of the double-trace amplitude in the high-energy limit and to compute the corresponding exact Regge trajectories. We verify that at weak coupling the expressions obtained are in agreement with an explicit five-loop calculation.



rate research

Read More

We explore and exploit the relation between non-planar correlators in ${cal N}=4$ super-Yang-Mills, and higher-genus closed string amplitudes in type IIB string theory. By conformal field theory techniques we construct the genus-one, four-point string amplitude in AdS$_5times S^5$ in the low-energy expansion, dual to an ${cal N}=4$ super-Yang-Mills correlator in the t Hooft limit at order $1/c^2$ in a strong coupling expansion. In the flat space limit, this maps onto the genus-one, four-point scattering amplitude for type II closed strings in ten dimensions. Using this approach we reproduce several results obtained via string perturbation theory. We also demonstrate a novel mechanism to fix subleading terms in the flat space limit of AdS amplitudes by using string/M-theory.
In this paper we consider systems of quantum particles in the $4d$ Euclidean space which enjoy conformal symmetry. The algebraic relations for conformal-invariant combinations of positions and momenta are used to construct a solution of the Yang-Baxter equation in the unitary irreducibile representations of the principal series $Delta=2+i u$ for any left/right spins $ell,dot{ell}$ of the particles. Such relations are interpreted in the language of Feynman diagrams as integral emph{star-triangle} identites between propagators of a conformal field theory. We prove the quantum integrability of a spin chain whose $k$-th site hosts a particle in the representation $(Delta_k,ell_k, dot{ ell}_k)$ of the conformal group, realizing a spinning and inhomogeneous version of the quantum magnet used to describe the spectrum of the bi-scalar Fishnet theories. For the special choice of particles in the scalar $(1,0,0)$ and fermionic $(3/2,1,0)$ representation the transfer matrices of the model are Bethe-Salpeter kernels for the double-scaling limit of specific two-point correlators in the $gamma$-deformed $mathcal{N}=4$ and $mathcal{N}=2$ supersymmetric theories.
We define form factors and scattering amplitudes in Conformal Field Theory as the coefficient of the singularity of the Fourier transform of time-ordered correlation functions, as $p^2 to 0$. In particular, we study a form factor $F(s,t,u)$ obtained from a four-point function of identical scalar primary operators. We show that $F$ is crossing symmetric, analytic and it has a partial wave expansion. We illustrate our findings in the 3d Ising model, perturbative fixed points and holographic CFTs.
We investigate properties of four point colour ordered scattering amplitudes in D=6 fishnet CFT. We show that such amplitudes are related via very simple relation to their D=4 counterparts considered previously in the literature. Exploiting this relation we obtain closed expression for such amplitudes and investigate its behaviour at weak and strong coupling. As by product of this investigation we also obtain generating function for on-shell D=6 Box ladder diagrams with l rungs.
93 - Jan E. Gerken 2020
In this thesis, we investigate the low-energy expansion of scattering amplitudes of closed strings at one-loop level (i.e. at genus one) in a ten-dimensional Minkowski background using a special class of functions called modular graph forms. These allow for a systematic evaluation of the low-energy expansion and satisfy many non-trivial algebraic and differential relations. We study these relations in detail, leading to basis decompositions for a large number of modular graph forms which greatly reduce the complexity of the expansions of the integrals appearing in the amplitude. One of the results of this thesis is a Mathematica package which automatizes these simplifications. We use these techniques to compute the leading low-energy orders of the scattering amplitude of four gluons in the heterotic string at one-loop level. Furthermore, we study a generating function which conjecturally contains the torus integrals of all perturbative closed-string theories. We write this generating function in terms of iterated integrals of holomorphic Eisenstein series and use this approach to arrive at a more rigorous characterization of the space of modular graph forms than was possible before. For tree-level string amplitudes, the single-valued map of multiple zeta values maps open-string amplitudes to closed-string amplitudes. The definition of a suitable one-loop generalization, a so-called elliptic single-valued map, is an active area of research and we provide a new perspective on this topic using our generating function of torus integrals. The original version of this thesis, as submitted in June 2020 to the Humboldt University Berlin, is available under the DOI 10.18452/21829. The present text contains minor updates compared to this version, reflecting further developments in the literature, in particular concerning the construction of an elliptic single-valued map.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا