No Arabic abstract
Population behaviours, such as voting and vaccination, depend on social networks. Social networks can differ depending on behaviour type and are typically hidden. However, we do often have large-scale behavioural data, albeit only snapshots taken at one timepoint. We present a method that jointly infers large-scale network structure and a networked model of human behaviour using only snapshot population behavioural data. This exploits the simplicity of a few parameter, geometric socio-demographic network model and a spin based model of behaviour. We illustrate, for the EU Referendum and two London Mayoral elections, how the model offers both prediction and the interpretation of our homophilic inclinations. Beyond offering the extraction of behaviour specific network structure from large-scale behavioural datasets, our approach yields a crude calculus linking inequalities and social preferences to behavioural outcomes. We give examples of potential network sensitive policies: how changes to income inequality, a social temperature and homophilic preferences might have reduced polarisation in a recent election.
How people connect with one another is a fundamental question in the social sciences, and the resulting social networks can have a profound impact on our daily lives. Blau offered a powerful explanation: people connect with one another based on their positions in a social space. Yet a principled measure of social distance, allowing comparison within and between societies, remains elusive. We use the connectivity kernel of conditionally-independent edge models to develop a family of segregation statistics with desirable properties: they offer an intuitive and universal characteristic scale on social space (facilitating comparison across datasets and societies), are applicable to multivariate and mixed node attributes, and capture segregation at the level of individuals, pairs of individuals, and society as a whole. We show that the segregation statistics can induce a metric on Blau space (a space spanned by the attributes of the members of society) and provide maps of two societies. Under a Bayesian paradigm, we infer the parameters of the connectivity kernel from eleven ego-network datasets collected in four surveys in the United Kingdom and United States. The importance of different dimensions of Blau space is similar across time and location, suggesting a macroscopically stable social fabric. Physical separation and age differences have the most significant impact on segregation within friendship networks with implications for intergenerational mixing and isolation in later stages of life.
This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years - the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographic, health, politics) for a densely connected population of 1,000 individuals, using state-of-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.
The conventional notion of community that favors a high ratio of internal edges to outbound edges becomes invalid when each vertex participates in multiple communities. Such a behavior is commonplace in social networks. The significant overlaps among communities make most existing community detection algorithms ineffective. The lack of effective and efficient tools resulted in very few empirical studies on large-scale detection and analyses of overlapping community structure in real social networks. We developed recently a scalable and accurate method called the Partial Community Merger Algorithm (PCMA) with linear complexity and demonstrated its effectiveness by analyzing two online social networks, Sina Weibo and Friendster, with 79.4 and 65.6 million vertices, respectively. Here, we report in-depth analyses of the 2.9 million communities detected by PCMA to uncover their complex overlapping structure. Each community usually overlaps with a significant number of other communities and has far more outbound edges than internal edges. Yet, the communities remain well separated from each other. Most vertices in a community are multi-membership vertices, and they can be at the core or the peripheral. Almost half of the entire network can be accounted for by an extremely dense network of communities, with the communities being the vertices and the overlaps being the edges. The empirical findings ask for rethinking the notion of community, especially the boundary of a community. Realizing that it is how the edges are organized that matters, the f-core is suggested as a suitable concept for overlapping community in social networks. The results shed new light on the understanding of overlapping community.
In many real-world scenarios, it is nearly impossible to collect explicit social network data. In such cases, whole networks must be inferred from underlying observations. Here, we formulate the problem of inferring latent social networks based on network diffusion or disease propagation data. We consider contagions propagating over the edges of an unobserved social network, where we only observe the times when nodes became infected, but not who infected them. Given such node infection times, we then identify the optimal network that best explains the observed data. We present a maximum likelihood approach based on convex programming with a l1-like penalty term that encourages sparsity. Experiments on real and synthetic data reveal that our method near-perfectly recovers the underlying network structure as well as the parameters of the contagion propagation model. Moreover, our approach scales well as it can infer optimal networks of thousands of nodes in a matter of minutes.
Influence overlap is a universal phenomenon in influence spreading for social networks. In this paper, we argue that the redundant influence generated by influence overlap cause negative effect for maximizing spreading influence. Firstly, we present a theoretical method to calculate the influence overlap and record the redundant influence. Then in term of eliminating redundant influence, we present two algorithms, namely, Degree-Redundant-Influence (DRS) and Degree-Second-Neighborhood (DSN) for multiple spreaders identification. The experiments for four empirical social networks successfully verify the methods, and the spreaders selected by the DSN algorithm show smaller degree and k-core values.