Do you want to publish a course? Click here

Measuring large-scale social networks with high resolution

132   0   0.0 ( 0 )
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years - the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographic, health, politics) for a densely connected population of 1,000 individuals, using state-of-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.



rate research

Read More

The conventional notion of community that favors a high ratio of internal edges to outbound edges becomes invalid when each vertex participates in multiple communities. Such a behavior is commonplace in social networks. The significant overlaps among communities make most existing community detection algorithms ineffective. The lack of effective and efficient tools resulted in very few empirical studies on large-scale detection and analyses of overlapping community structure in real social networks. We developed recently a scalable and accurate method called the Partial Community Merger Algorithm (PCMA) with linear complexity and demonstrated its effectiveness by analyzing two online social networks, Sina Weibo and Friendster, with 79.4 and 65.6 million vertices, respectively. Here, we report in-depth analyses of the 2.9 million communities detected by PCMA to uncover their complex overlapping structure. Each community usually overlaps with a significant number of other communities and has far more outbound edges than internal edges. Yet, the communities remain well separated from each other. Most vertices in a community are multi-membership vertices, and they can be at the core or the peripheral. Almost half of the entire network can be accounted for by an extremely dense network of communities, with the communities being the vertices and the overlaps being the edges. The empirical findings ask for rethinking the notion of community, especially the boundary of a community. Realizing that it is how the edges are organized that matters, the f-core is suggested as a suitable concept for overlapping community in social networks. The results shed new light on the understanding of overlapping community.
Influence overlap is a universal phenomenon in influence spreading for social networks. In this paper, we argue that the redundant influence generated by influence overlap cause negative effect for maximizing spreading influence. Firstly, we present a theoretical method to calculate the influence overlap and record the redundant influence. Then in term of eliminating redundant influence, we present two algorithms, namely, Degree-Redundant-Influence (DRS) and Degree-Second-Neighborhood (DSN) for multiple spreaders identification. The experiments for four empirical social networks successfully verify the methods, and the spreaders selected by the DSN algorithm show smaller degree and k-core values.
Population behaviours, such as voting and vaccination, depend on social networks. Social networks can differ depending on behaviour type and are typically hidden. However, we do often have large-scale behavioural data, albeit only snapshots taken at one timepoint. We present a method that jointly infers large-scale network structure and a networked model of human behaviour using only snapshot population behavioural data. This exploits the simplicity of a few parameter, geometric socio-demographic network model and a spin based model of behaviour. We illustrate, for the EU Referendum and two London Mayoral elections, how the model offers both prediction and the interpretation of our homophilic inclinations. Beyond offering the extraction of behaviour specific network structure from large-scale behavioural datasets, our approach yields a crude calculus linking inequalities and social preferences to behavioural outcomes. We give examples of potential network sensitive policies: how changes to income inequality, a social temperature and homophilic preferences might have reduced polarisation in a recent election.
We introduce a new threshold model of social networks, in which the nodes influenced by their neighbours can adopt one out of several alternatives. We characterize social networks for which adoption of a product by the whole network is possible (respectively necessary) and the ones for which a unique outcome is guaranteed. These characterizations directly yield polynomial time algorithms that allow us to determine whether a given social network satisfies one of the above properties. We also study algorithmic questions for networks without unique outcomes. We show that the problem of determining whether a final network exists in which all nodes adopted some product is NP-complete. In turn, the problems of determining whether a given node adopts some (respectively, a given) product in some (respectively, all) network(s) are either co-NP complete or can be solved in polynomial time. Further, we show that the problem of computing the minimum possible spread of a product is NP-hard to approximate with an approximation ratio better than $Omega(n)$, in contrast to the maximum spread, which is efficiently computable. Finally, we clarify that some of the above problems can be solved in polynomial time when there are only two products.
We study the dynamic network of relationships among avatars in the massively multiplayer online game Planetside 2. In the spring of 2014, two separate servers of this game were merged, and as a result, two previously distinct networks were combined into one. We observed the evolution of this network in the seven month period following the merger and report our observations. We found that some structures of original networks persist in the combined network for a long time after the merger. As the original avatars are gradually removed, these structures slowly dissolve, but they remain observable for a surprisingly long time. We present a number of visualizations illustrating the post-merger dynamics and discuss time evolution of selected quantities characterizing the topology of the network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا