No Arabic abstract
Real-world object detectors are often challenged by the domain gaps between different datasets. In this work, we present the Conditional Domain Normalization (CDN) to bridge the domain gap. CDN is designed to encode different domain inputs into a shared latent space, where the features from different domains carry the same domain attribute. To achieve this, we first disentangle the domain-specific attribute out of the semantic features from one domain via a domain embedding module, which learns a domain-vector to characterize the corresponding domain attribute information. Then this domain-vector is used to encode the features from another domain through a conditional normalization, resulting in different domains features carrying the same domain attribute. We incorporate CDN into various convolution stages of an object detector to adaptively address the domain shifts of different levels representation. In contrast to existing adaptation works that conduct domain confusion learning on semantic features to remove domain-specific factors, CDN aligns different domain distributions by modulating the semantic features of one domain conditioned on the learned domain-vector of another domain. Extensive experiments show that CDN outperforms existing methods remarkably on both real-to-real and synthetic-to-real adaptation benchmarks, including 2D image detection and 3D point cloud detection.
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications such as classification, segmentation, and detection. However, learning highly accurate models relies on the availability of large-scale annotated datasets. Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images, termed as domain adaptation problem. There is a plethora of works to adapt classification and segmentation models to label-scarce target datasets through unsupervised domain adaptation. Considering that detection is a fundamental task in computer vision, many recent works have focused on developing novel domain adaptive detection techniques. Here, we describe in detail the domain adaptation problem for detection and present an extensive survey of the various methods. Furthermore, we highlight strategies proposed and the associated shortcomings. Subsequently, we identify multiple aspects of the problem that are most promising for future research. We believe that this survey shall be valuable to the pattern recognition experts working in the fields of computer vision, biometrics, medical imaging, and autonomous navigation by introducing them to the problem, and familiarizing them with the current status of the progress while providing promising directions for future research.
Traditional convolution-based generative adversarial networks synthesize images based on hierarchical local operations, where long-range dependency relation is implicitly modeled with a Markov chain. It is still not sufficient for categories with complicated structures. In this paper, we characterize long-range dependence with attentive normalization (AN), which is an extension to traditional instance normalization. Specifically, the input feature map is softly divided into several regions based on its internal semantic similarity, which are respectively normalized. It enhances consistency between distant regions with semantic correspondence. Compared with self-attention GAN, our attentive normalization does not need to measure the correlation of all locations, and thus can be directly applied to large-size feature maps without much computational burden. Extensive experiments on class-conditional image generation and semantic inpainting verify the efficacy of our proposed module.
Batch normalization has been widely used to improve optimization in deep neural networks. While the uncertainty in batch statistics can act as a regularizer, using these dataset statistics specific to the training set impairs generalization in certain tasks. Recently, alternative methods for normalizing feature activations in neural networks have been proposed. Among them, group normalization has been shown to yield similar, in some domains even superior performance to batch normalization. All these methods utilize a learned affine transformation after the normalization operation to increase representational power. Methods used in conditional computation define the parameters of these transformations as learnable functions of conditioning information. In this work, we study whether and where the conditional formulation of group normalization can improve generalization compared to conditional batch normalization. We evaluate performances on the tasks of visual question answering, few-shot learning, and conditional image generation.
Training object class detectors typically requires a large set of images with objects annotated by bounding boxes. However, manually drawing bounding boxes is very time consuming. In this paper we greatly reduce annotation time by proposing center-click annotations: we ask annotators to click on the center of an imaginary bounding box which tightly encloses the object instance. We then incorporate these clicks into existing Multiple Instance Learning techniques for weakly supervised object localization, to jointly localize object bounding boxes over all training images. Extensive experiments on PASCAL VOC 2007 and MS COCO show that: (1) our scheme delivers high-quality detectors, performing substantially better than those produced by weakly supervised techniques, with a modest extra annotation effort; (2) these detectors in fact perform in a range close to those trained from manually drawn bounding boxes; (3) as the center-click task is very fast, our scheme reduces total annotation time by 9x to 18x.
Weakly-supervised object localization (WSOL) enables finding an object using a dataset without any localization information. By simply training a classification model using only image-level annotations, the feature map of the model can be utilized as a score map for localization. In spite of many WSOL methods proposing novel strategies, there has not been any de facto standard about how to normalize the class activation map (CAM). Consequently, many WSOL methods have failed to fully exploit their own capacity because of the misuse of a normalization method. In this paper, we review many existing normalization methods and point out that they should be used according to the property of the given dataset. Additionally, we propose a new normalization method which substantially enhances the performance of any CAM-based WSOL methods. Using the proposed normalization method, we provide a comprehensive evaluation over three datasets (CUB, ImageNet and OpenImages) on three different architectures and observe significant performance gains over the conventional min-max normalization method in all the evaluated cases.