Do you want to publish a course? Click here

Magnetic critical behavior of the van der Waals Fe5GeTe2 crystal with near room temperature ferromagnetism

168   0   0.0 ( 0 )
 Added by Yanfeng Guo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The van der Waals ferromagnet Fe5GeTe2 has a Curie temperature TC of about 270 K, which can be raised above room temperature by tuning the Fe deficiency content. To achieve insights into its ferromagnetic exchange, we have studied the critical behavior by measuring the magnetization in bulk Fe5GeTe2 crystal around the ferromagnetic to paramagnetic phase transition. The analysis of the magnetization by employing various techniques including the modified Arrott plot, Kouvel-Fisher plot and critical isotherm analysis achieved a set of reliable critical exponents with TC = 273.7 K, beta = 0.3457, gamma = 1.40617, and delta = 5.021, suggesting a three-dimensional magnetic exchange with the distance decaying as J(r) ~ (r)$^-4.916, which is close to that of a three-dimensional Heisenberg model with long-range magnetic coupling.



rate research

Read More

In recent years, two-dimensional van der Waals materials have emerged as an important platform for the observation of long-range ferromagnetic order in atomically thin layers. Although heterostructures of such materials can be conceived to harness and couple a wide range of magneto-optical and magneto-electrical properties, technologically relevant applications require Curie temperatures at or above room-temperature and the ability to grow films over large areas. Here we demonstrate the large-area growth of single-crystal ultrathin films of stoichiometric Fe5GeTe2 on an insulating substrate using molecular beam epitaxy. Magnetic measurements show the persistence of soft ferromagnetism up to room temperature, with a Curie temperature of 293 K, and a weak out-of-plane magnetocrystalline anisotropy. Surface, chemical, and structural characterizations confirm the layer-by-layer growth, 5:1:2 Fe:Ge:Te stoichiometric elementary composition, and single crystalline character of the films.
The weak antilocalization (WAL) effect is known as a quantum correction to the classical conductivity, which never appeared in two-dimensional magnets. In this work, we reported the observation of a WAL effect in the van der Waals ferromagnet Fe5-xGeTe2 with a Curie temperature Tc ~ 270 K, which can even reach as high as ~ 120 K. The WAL effect could be well described by the Hikami-Larkin-Nagaoka and Maekawa-Fukuyama theories in the presence of strong spin-orbit coupling (SOC). Moreover, A crossover from a peak to dip behavior around 60 K in both the magnetoresistance and magnetoconductance was observed, which could be ascribed to a rare example of temperature driven Lifshitz transition as indicated by the angle-resolved photoemission spectroscopy measurements and first principles calculations. The reflective magnetic circular dichroism measurements indicate a possible spin reorientation that kills the WAL effect above 120 K. Our findings present a rare example of WAL effect in two-dimensional ferromagnet and also a magnetotransport fingerprint of the strong SOC in Fe5-xGeTe2. The results would be instructive for understanding the interaction Hamiltonian for such high Tc itinerant ferromagnetism as well as be helpful for the design of next-generation room temperature spintronic or twistronic devices.
We investigate near-Fermi-energy (EF) element-specific electronic and spin states of ferromagnetic van der Waals (vdW) metal Fe5GeTe2. The soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) measurement provides spectroscopic evidence of localized Fe 3d band. We also find prominent hybridization between the localized Fe 3d band and the delocalized Ge/Te p bands. This picture is strongly supported from direct observation of the remarkable spin polarization of the ligand p bands near EF, using x-ray magnetic circular dichroism (XMCD) measurements. The strength of XMCD signal from ligand element Te shows the highest value, as far as we recognize, among literature reporting finite XMCD signal for none-magnetic element in any systems. Combining SX-ARPES and elemental selective XMCD measurements, we collectively point an important role of giant spin polarization of the delocalized ligand Te states for realizing itinerant long-range ferromagnetism in Fe5GeTe2. Our finding provides a fundamental elemental selective view-point for understanding mechanism of itinerant ferromagnetism in low dimensional compounds, which also leads insight for designing exotic magnetic states by interfacial band engineering in heterostructures.
A complex interplay of different energy scales involving Coulomb repulsion, spin-orbit coupling and Hunds coupling energy in two-dimensional (2D) van der Waals (vdW) material produces novel emerging physical state. For instance, ferromagnetism in vdW charge transfer insulator CrGeTe$_3$, that provides a promising platform to simultaneously manipulate the magnetic and electrical properties for potential device implementation using few layers thick materials. Here, we show a continuous tuning of magnetic and electrical properties of CrGeTe$_3$ single crystal using pressure. With application of pressure, CrGeTe$_3$ transforms from a FM insulator with Curie temperature, $T_{rm{C}} sim $ 66 K at ambient condition to a correlated 2D Fermi metal with $T_{rm{C}}$ exceeding $sim$ 250 K. Notably, absence of an accompanying structural distortion across the insulator-metal transition (IMT) suggests that the pressure induced modification of electronic ground states are driven by electronic correlation furnishing a rare example of bandwidth-controlled IMT in a vdW material.
The magnetic van der Waals crystals MnBi2Te4/(Bi2Te3)n have drawn significant attention due to their rich topological properties and the tunability by external magnetic field. Although the MnBi2Te4/(Bi2Te3)n family have been intensively studied in the past few years, their close relatives, the MnSb2Te4/(Sb2Te3)n family, remain much less explored. In this work, combining magnetotransport measurements, angle-resolved photoemission spectroscopy, and first principles calculations, we find that MnSb4Te7, the n = 1 member of the MnSb2Te4/(Sb2Te3)n family, is a magnetic topological system with versatile topological phases which can be manipulated by both carrier doping and magnetic field. Our calculations unveil that its A-type antiferromagnetic (AFM) ground state stays in a Z_2 AFM topological insulator phase, which can be converted to an inversion-symmetry-protected axion insulator phase when in the ferromagnetic (FM) state. Moreover, when this system in the FM phase is slightly carrier doped on either the electron or hole side, it becomes a Weyl semimetal with multiple Weyl nodes in the highest valence bands and lowest conduction bands, which are manifested by the measured notable anomalous Hall effect. Our work thus introduces a new magnetic topological material with different topological phases which are highly tunable by carrier doping or magnetic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا