Do you want to publish a course? Click here

Escape from the swamp with spectator

50   0   0.0 ( 0 )
 Added by Yuichiro Tada
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the context of string theory, several conjectural conditions have been proposed for low energy effective field theories not to be in swampland, the UV-incomplete class. The recent ones represented by the de Sitter and trans-Planckian censorship conjectures in particular seem to conflict with the inflation paradigm of the early universe. We first point out that scenarios where inflation is repeated several times (multi-phase inflation) can be easily compatible with these conjectures. In other words, we relax the constraint on the single inflation for the large scale perturbations to only continue at least around 10 e-folds. In this context, we then investigate if a spectator field can be a source of the almost scale-invariant primordial perturbations on the large scale. As a consequence of such an isocurvature contribution, the resultant perturbations exhibit the non-vanishing non-Gaussianity in general. Also the perturbation amplitude on smaller scales can be completely different from that on the large scale due to the multiplicity of inflationary phases. These signatures will be a smoking gun of this scenario by the future observations.



rate research

Read More

Perturbations in cosmic microwave background (CMB) photons and large scale structure of the universe are sourced primarily by the curvature perturbation which is widely believed to be produced during inflation. In this paper we present a 2-field inflationary model in which the inflaton couples bi-quadratically to a spectator field. We show that the spectator induces a rapid growth of the momentum of the curvature perturbation and the associated Gaussian van Neumann entropy during inflation such that the initial conditions at the end of inflation are substantially different from the standard ones. Consequently, one ought to reconsider the kinetic equations describing evolution of the photon, dark matter and baryonic fluids in radiation and matter eras and take account of the fact that the curvature perturbation and its canonical momentum are two {it a priory} independent stochastic fields. We also briefly analyze possible imprints on the CMB temperature fluctuations from the more general inflationary scenario which contains light spectator fields coupled to the inflaton.
We apply the Effective Field Theory of Large-Scale Structure to analyze the $w$CDM cosmological model. By using the full shape of the power spectrum and the BAO post-reconstruction measurements from BOSS, the Supernovae from Pantheon, and a prior from BBN, we set the competitive CMB-independent limit $w=-1.046_{-0.052}^{+0.055}$ at $68%$ C.L.. After adding the Planck CMB data, we find $w=-1.023_{-0.030}^{+0.033}$ at $68%$ C.L.. Our results are obtained using PyBird, a new, fast Python-based code which we make publicly available.
Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the properties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions $Gmu gtrsim mathcal{O}(10^{-17})$, improving by about $6$ orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially $3$ orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISAs frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.
We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.
In this work, we use the simulated gravitational wave (GW) standard siren data from the future observation of the Einstein Telescope (ET) to constrain various dark energy cosmological models, including the $Lambda$CDM, $w$CDM, CPL, $alpha$DE, GCG, and NGCG models. We also use the current mainstream cosmological electromagnetic observations, i.e., the cosmic microwave background anisotropies data, the baryon acoustic oscillations data, and the type Ia supernovae data, to constrain these models. We find that the GW standard siren data could tremendously improve the constraints on the cosmological parameters for all these dark energy models. For all the cases, the GW standard siren data can be used to break the parameter degeneracies generated by the current cosmological electromagnetic observational data. Therefore, it is expected that the future GW standard siren observation from the ET would play a crucial role in the cosmological parameter estimation in the future. The conclusion of this work is quite solid because it is based on the analysis for various dark energy models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا