No Arabic abstract
Perturbations in cosmic microwave background (CMB) photons and large scale structure of the universe are sourced primarily by the curvature perturbation which is widely believed to be produced during inflation. In this paper we present a 2-field inflationary model in which the inflaton couples bi-quadratically to a spectator field. We show that the spectator induces a rapid growth of the momentum of the curvature perturbation and the associated Gaussian van Neumann entropy during inflation such that the initial conditions at the end of inflation are substantially different from the standard ones. Consequently, one ought to reconsider the kinetic equations describing evolution of the photon, dark matter and baryonic fluids in radiation and matter eras and take account of the fact that the curvature perturbation and its canonical momentum are two {it a priory} independent stochastic fields. We also briefly analyze possible imprints on the CMB temperature fluctuations from the more general inflationary scenario which contains light spectator fields coupled to the inflaton.
In the context of string theory, several conjectural conditions have been proposed for low energy effective field theories not to be in swampland, the UV-incomplete class. The recent ones represented by the de Sitter and trans-Planckian censorship conjectures in particular seem to conflict with the inflation paradigm of the early universe. We first point out that scenarios where inflation is repeated several times (multi-phase inflation) can be easily compatible with these conjectures. In other words, we relax the constraint on the single inflation for the large scale perturbations to only continue at least around 10 e-folds. In this context, we then investigate if a spectator field can be a source of the almost scale-invariant primordial perturbations on the large scale. As a consequence of such an isocurvature contribution, the resultant perturbations exhibit the non-vanishing non-Gaussianity in general. Also the perturbation amplitude on smaller scales can be completely different from that on the large scale due to the multiplicity of inflationary phases. These signatures will be a smoking gun of this scenario by the future observations.
In this work we study the imprints of a primordial cosmic string on inflationary power spectrum. Cosmic string induces two distinct contributions on curvature perturbations power spectrum. The first type of correction respects the translation invariance while violating isotropy. This generates quadrupolar statistical anisotropy in CMB maps which is constrained by the Planck data. The second contribution breaks both homogeneity and isotropy, generating a dipolar power asymmetry in variance of temperature fluctuations with its amplitude falling on small scales. We show that the strongest constraint on the tension of string is obtained from the quadrupolar anisotropy and argue that the mass scale of underlying theory responsible for the formation of string can not be much higher than the GUT scale. The predictions of string for the diagonal and off-diagonal components of CMB angular power spectrum are presented.
We do a complete calculation of the stochastic gravitational wave background to be expected from cosmic strings. We start from a population of string loops taken from simulations, smooth these by Lorentzian convolution as a model of gravitational back reaction, calculate the average spectrum of gravitational waves emitted by the string population at any given time, and propagate it through a standard model cosmology to find the stochastic background today. We take into account all known effects, including changes in the number of cosmological relativistic degrees of freedom at early times and the possibility that some energy is in rare bursts that we might never have observed.
The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non-linear evolution of density perturbations on super-Hubble scales starting from Gaussian field fluctuations during inflation. I describe the delta-N formalism used to calculate the primordial density perturbation on large scales and then review several models for the origin of local primordial non-Gaussianity, including the cuvaton, modulated reheating and ekpyrotic scenarios. I include an appendix with a table of sign conventions used in specific papers.
Bursts of particle production during inflation provide a well-motivated mechanism for creating bump like features in the primordial power spectrum. Current data constrains these features to be less than about 5% the size of the featureless primordial power spectrum at wavenumbers of about 0.1 h Mpc^{-1}. We forecast that the Planck cosmic microwave background experiment will be able to strengthen this constraint to the 0.5% level. We also predict that adding data from a square kilometer array (SKA) galaxy redshift survey would improve the constraint to about the 0.1% level. For features at larger wave-numbers, Planck will be limited by Silk damping and foregrounds. While, SKA will be limited by non-linear effects. We forecast for a Cosmic Inflation Probe (CIP) galaxy redshift survey, similar constraints can be achieved up to about a wavenumber of 1 h Mpc^{-1}.