No Arabic abstract
This work proposes a novel adaptation of a pretrained sequence-to-sequence model to the task of document ranking. Our approach is fundamentally different from a commonly-adopted classification-based formulation of ranking, based on encoder-only pretrained transformer architectures such as BERT. We show how a sequence-to-sequence model can be trained to generate relevance labels as target words, and how the underlying logits of these target words can be interpreted as relevance probabilities for ranking. On the popular MS MARCO passage ranking task, experimental results show that our approach is at least on par with previous classification-based models and can surpass them with larger, more-recent models. On the test collection from the TREC 2004 Robust Track, we demonstrate a zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-dataset cross-validation. Furthermore, we find that our approach significantly outperforms an encoder-only model in a data-poor regime (i.e., with few training examples). We investigate this observation further by varying target words to probe the models use of latent knowledge.
We propose a design pattern for tackling text ranking problems, dubbed Expando-Mono-Duo, that has been empirically validated for a number of ad hoc retrieval tasks in different domains. At the core, our design relies on pretrained sequence-to-sequence models within a standard multi-stage ranking architecture. Expando refers to the use of document expansion techniques to enrich keyword representations of texts prior to inverted indexing. Mono and Duo refer to components in a reranking pipeline based on a pointwise model and a pairwise model that rerank initial candidates retrieved using keyword search. We present experimental results from the MS MARCO passage and document ranking tasks, the TREC 2020 Deep Learning Track, and the TREC-COVID challenge that validate our design. In all these tasks, we achieve effectiveness that is at or near the state of the art, in some cases using a zero-shot approach that does not exploit any training data from the target task. To support replicability, implementations of our design pattern are open-sourced in the Pyserini IR toolkit and PyGaggle neural reranking library.
Context information in search sessions has proven to be useful for capturing user search intent. Existing studies explored user behavior sequences in sessions in different ways to enhance query suggestion or document ranking. However, a user behavior sequence has often been viewed as a definite and exact signal reflecting a users behavior. In reality, it is highly variable: users queries for the same intent can vary, and different documents can be clicked. To learn a more robust representation of the user behavior sequence, we propose a method based on contrastive learning, which takes into account the possible variations in users behavior sequences. Specifically, we propose three data augmentation strategies to generate similar variants of user behavior sequences and contrast them with other sequences. In so doing, the model is forced to be more robust regarding the possible variations. The optimized sequence representation is incorporated into document ranking. Experiments on two real query log datasets show that our proposed model outperforms the state-of-the-art methods significantly, which demonstrates the effectiveness of our method for context-aware document ranking.
We present an attention-based sequence-to-sequence neural network which can directly translate speech from one language into speech in another language, without relying on an intermediate text representation. The network is trained end-to-end, learning to map speech spectrograms into target spectrograms in another language, corresponding to the translated content (in a different canonical voice). We further demonstrate the ability to synthesize translated speech using the voice of the source speaker. We conduct experiments on two Spanish-to-English speech translation datasets, and find that the proposed model slightly underperforms a baseline cascade of a direct speech-to-text translation model and a text-to-speech synthesis model, demonstrating the feasibility of the approach on this very challenging task.
Ranking models are the main components of information retrieval systems. Several approaches to ranking are based on traditional machine learning algorithms using a set of hand-crafted features. Recently, researchers have leveraged deep learning models in information retrieval. These models are trained end-to-end to extract features from the raw data for ranking tasks, so that they overcome the limitations of hand-crafted features. A variety of deep learning models have been proposed, and each model presents a set of neural network components to extract features that are used for ranking. In this paper, we compare the proposed models in the literature along different dimensions in order to understand the major contributions and limitations of each model. In our discussion of the literature, we analyze the promising neural components, and propose future research directions. We also show the analogy between document retrieval and other retrieval tasks where the items to be ranked are structured documents, answers, images and videos.
Automatic Music Transcription has seen significant progress in recent years by training custom deep neural networks on large datasets. However, these models have required extensive domain-specific design of network architectures, input/output representations, and complex decoding schemes. In this work, we show that equivalent performance can be achieved using a generic encoder-decoder Transformer with standard decoding methods. We demonstrate that the model can learn to translate spectrogram inputs directly to MIDI-like output events for several transcription tasks. This sequence-to-sequence approach simplifies transcription by jointly modeling audio features and language-like output dependencies, thus removing the need for task-specific architectures. These results point toward possibilities for creating new Music Information Retrieval models by focusing on dataset creation and labeling rather than custom model design.