Do you want to publish a course? Click here

Hubble Space Telescope Search for Activity in High Perihelion Objects

65   0   0.0 ( 0 )
 Added by Jing Li
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solar system objects with perihelia beyond the orbit of Jupiter ($q >$ 5 AU) are too cold for water ice to generate an appreciable coma via sublimation. Despite this, numerous high perihelion objects (HPOs) including many comets and recently escaped Kuiper belt objects (``Centaurs) are observed to be active out at least to the orbit of Saturn ($q sim$ 10 AU). Peak equilibrium temperatures at 10 AU ($sim$125 K), while far too low to sublimate water ice, are sufficient to sublimate super-volatiles such as CO and CO$_2$ ice. Temperatures at 10 AU are also high enough to trigger the rapid crystallization of exposed amorphous ice, thus constituting another possible driver of distant activity. While supervolatile ices can sublimate strongly (as $r_H^{-2}$) to at least Kuiper belt (30 AU) distances, crystallization is an exponential function of temperature that cannot be sustained much beyond $sim$10 AU. The heliocentric dependence of the activity thus suggests an observational test. If activity in high perihelion objects is triggered by crystallization, then no examples of activity should be found with perihelia $q >>$ 10 AU. If, on the other hand, activity is due to free sublimation of exposed supervolatile ices, or another cause, then distant activity might be detected. We obtained sensitive, high resolution Hubble Space Telescope observations of HPOs to search for activity beyond the crystallization zone. No examples of activity were detected in 53 objects with $q >$ 15 AU, consistent with the crystallization trigger hypothesis. However, sensitivity limits are such that we cannot reject the alternative hypothesis that mass loss is driven by the sublimation of supervolatile ices. We also searched for binary companions in our sample, finding none and setting an empirical 3$sigma$ limit to the binary fraction of $<8$%.



rate research

Read More

We present polarization images of Comet ISON (C/2012 S1) taken with the Hubble Space Telescope (HST) on UTC 2013 May 8 (rh = 3.81 AU, Delta = 4.34 AU), when the phase angle was alpha = 12.16 degrees. This phase angle is approximately centered in the negative polarization branch for cometary dust. The region beyond 1000 km from the nucleus shows a negative polarization amplitude of p% -1.6%. Within 1000 km of the nucleus, the polarization position angle rotates to be approximately perpendicular to the scattering plane, with an amplitude p% +2.5%. Such positive polarization has been observed previously as a characteristic feature of cometary jets, and we show that Comet ISON does indeed harbor a jet-like feature. These HST observations of Comet ISON represent the first visible light, imaging polarimetry with sub-arcsecond spatial resolution of a Nearly Isotropic Comet (NIC) beyond 3.8 AU from the Sun at a small phase angle. The observations provide an early glimpse of the properties of the cometary dust preserved in this Oort-cloud comet.
The detection of small planets orbiting nearby stars is an important step towards the identification of Earth twins. In previous work using the Spitzer Space Telescope, we found evidence to support at least one sub-Earth-sized exoplanet orbiting the nearby mid-M dwarf star GJ 436. As a follow up, here we used the Hubble Space Telescope to investigate the existence of one of these candidate planets, UCF-1.01, by searching for two transit signals as it passed in front of its host star. Interpretation of the data hinges critically on correctly modeling and removing the WFC3 instrument systematics from the light curves. Building on previous HST work, we demonstrate that WFC3 analyses need to explore the use of a quadratic function to fit a visit-long time-dependent systematic. This is important for establishing absolute transit and eclipse depths in the white light curves of all transiting systems. The work presented here exemplifies this point by putatively detecting the primary transit of UCF-1.01 with the use of a linear trend. However, using a quadratic trend, we achieve a better fit to the white light curves and a reduced transit depth that is inconsistent with previous Spitzer measurements. Furthermore, quadratic trends with or without a transit model component produce comparable fits to the available data. Using extant WFC3 transit light curves for GJ436b, we further validate the quadratic model component by achieving photon-limited model fit residuals and consistent transit depths over multiple epochs. We conclude that, when we fit for a quadratic trend, our new data contradict the prediction of a sub-Earth-sized planet orbiting GJ 436 with the size, period, and ephemeris posited from the Spitzer data by a margin of 3.1{sigma}.
Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterisation of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet Alpha Centauri Bb with the Hubble Space Telescope (HST). We observed Alpha Centauri B twice in 2013 and 2014 for a total of 40 hours. We achieve a precision of 115 ppm per 6-s exposure time in a highly-saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of Alpha Centauri Bb with the orbital parameters published in the literature at 96.6% confidence. We find in our data a single transit-like event that could be associated to another Earth-size planet in the system, on a longer period orbit. Our program demonstrates the ability of HST to obtain consistent, high-precision photometry of saturated stars over 26 hours of continuous observations.
Only a small number of exoplanets has been identified in stellar cluster environments. We initiated a high angular resolution direct imaging search using the Hubble Space Telescope (HST) and its NICMOS instrument for self-luminous giant planets in orbit around seven white dwarfs in the 625 Myr old nearby (45 pc) Hyades cluster. The observations were obtained with NIC1 in the F110W and F160W filters, and encompass two HST roll angles to facilitate angular differential imaging. The difference images were searched for companion candidates, and radially averaged contrast curves were computed. Though we achieve the lowest mass detection limits yet for angular separations >0.5 arcsec, no planetary mass companion to any of the seven white dwarfs, whose initial main sequence masses were >2.8 Msun, was found. Comparison with evolutionary models yields detection limits of 5 to 7 Jupiter masses according to one model, and between 9 and 12 Mjup according to another model, at physical separations corresponding to initial semimajor axis of >5 to 8 A.U. (i.e., before the mass loss events associated with the red and asymptotic giant branch phase of the host star). The study provides further evidence that initially dense cluster environments, which included O- and B-type stars, might not be highly conducive to the formation of massive circumstellar disks, and their transformation into giant planets (with m>6 Mjup and a>6 A.U.). This is in agreement with radial velocity surveys for exoplanets around G- and K-type giants, which did not find any planets around stars more massive than about 3 Msun.
We searched for dust or debris rings in the Pluto-Charon system before, during, and after the New Horizons encounter. Methodologies included searching for back-scattered light during the approach to Pluto (phase $sim15^circ$), in situ detection of impacting particles, a search for stellar occultations near the time of closest approach, and by forward-scattered light during departure (phase $sim165^circ$). A search using HST prior to the encounter also contributed to the results. No rings, debris, or dust features were observed, but our detection limits provide an improved picture of the environment throughout the Pluto-Charon system. Searches for rings in back-scattered light covered 35,000-250,000 km from the system barycenter, a zone that starts interior to the orbit of Styx, and extends to four times the orbital radius of Hydra. We obtained our firmest limits using the NH LORRI camera in the inner half of this region. Our limits on the normal $I/F$ of an unseen ring depends on the radial scale of the rings: $2times10^{-8}$ ($3sigma$) for 1500 km wide rings, $1times10^{-8}$ for 6000 km rings, and $7times10^{-9}$ for 12,000 km rings. Beyond $sim100,000$ km from Pluto, HST observations limit normal $I/F$ to $sim8times10^{-8}$. Searches for dust from forward-scattered light extended from the surface of Pluto to the Pluto-Charon Hill sphere ($r_{rm Hill}=6.4times10^6$ km). No evidence for rings or dust was detected to normal $I/F$ limits of $sim8.9times10^{-7}$ on $sim10^4$ km scales. Four occulation observations also probed the space interior to Hydra, but again no dust or debris was detected. Elsewhere in the solar system, small moons commonly share their orbits with faint dust rings. Our results suggest that small grains are quickly lost from the system due to solar radiation pressure, whereas larger particles are unstable due to perturbations by the known moons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا