Do you want to publish a course? Click here

Technique for Generating Broadband FM Light

202   0   0.0 ( 0 )
 Added by Brandon Buscaino
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We suggest a technique for using off-resonance spectral comb generation to produce broadband frequency modulated, and therefore, amplitude quieted light. Results include closed-form formulae for the amplitudes and phases of all of the spectral components.



rate research

Read More

The ability to create dynamic, tailored optical potentials has become important across fields ranging from biology to quantum science. We demonstrate a method for the creation of arbitrary optical tweezer potentials using the broadband spectral profile of a superluminescent diode combined with the chromatic aberration of a lens. A tunable filter, typically used for ultra-fast laser pulse shaping, allows us to manipulate the broad spectral profile and therefore the optical tweezer potentials formed by focusing of this light. We characterize these potentials by measuring the Brownian motion of levitated nanoparticles in vacuum and, also demonstrate interferometric detection and feedback cooling of the particle,s motion. This simple and cost-effective technique will enable a wide range of applications and allow rapid modulation of the optical potential landscape in excess of MHz frequencies.
We suggest a broadband optical unidirectional arrayed nanoantenna consisting of equally spaced nanorods of gradually varying length. Each nanorod can be driven by near-field quantum emitters radiating at different frequencies or, according to the reciprocity principle, by an incident light at the same frequency. Broadband unidirectional emission and reception characteristics of the nano-antenna open up novel opportunities for subwavelength light manipulation and quantum communication, as well as for enhancing the performance of photoactive devices such as photovoltaic detectors, light-emitting diodes, and solar cells.
Graphene is an ideal material for integrated nonlinear optics thanks to its strong light-matter interaction and large nonlinear optical susceptibility. Graphene has been used in optical modulators, saturable absorbers, nonlinear frequency converters, and broadband light emitters. For the latter application, a key requirement is the ability to control and engineer the emission wavelength and bandwidth, as well as the electronic temperature of graphene. Here, we demonstrate that the emission wavelength of graphene$$ s broadband hot carrier photoluminescence can be tuned by integration on photonic cavities, while thermal management can be achieved by out-of-plane heat transfer to hexagonal boron nitride. Our results pave the way to graphene-based ultrafast broadband light emitters with tunable emission.
170 - Zhenwei Xie , Ting Lei , Fan Li 2017
On-chip twisted light emitters are essential components for orbital angular momentum (OAM) communication devices, which could address the growing demand for high-capacity communication systems by providing an additional degree of freedom for wavelength/frequency division multiplexing (WDM/FDM). Although whispering gallery mode enabled OAM emitters have been shown to possess some advantages, such as being compact and phase accurate, their inherent narrow bandwidth prevents them from being compatible with WDM/FDM techniques. Here, we demonstrate an ultra-broadband multiplexed OAM emitter that utilizes a novel joint path-resonance phase control concept. The emitter has a micron sized radius and nanometer sized features. Coaxial OAM beams are emitted across the entire telecommunication band from 1450 to 1650 nm. We applied the emitter for OAM communication with a data rate of 1.2 Tbit/s assisted by 30-channel optical frequency combs (OFC). The emitter provides a new solution to further increase of the capacity in the OFC communication scenario.
Nanophotonic waveguides with sub-wavelength mode confinement and engineered dispersion profiles are an excellent platform for application-tailored nonlinear optical interactions at low pulse energies. Here, we present fully air clad suspended-silicon waveguides for infrared frequency comb generation with optical bandwidth limited only by the silicon transparency. The achieved spectra are lithographically tailored to span 2.1 octaves in the mid-infrared (2.0-8.5 um or 1170--5000 cm-1) when pumped at 3.10 um with 100 pJ pulses. Novel fork-shaped couplers provide efficient input coupling with only 1.5 dB loss. The coherence, brightness, and the stability of the generated light are highlighted in a dual frequency comb setup in which individual comb-lines are resolved with 30 dB extinction ratio and 100 MHz spacing in the wavelength range of 4.8-8.5 um (2100-1170 cm-1). These sources are used for broadband gas- and liquid-phase dual-comb spectroscopy with 100 MHz comb-line resolution. We achieve a peak spectral signal-to-noise ratio of 10 Hz^0.5 across a simultaneous bandwidth containing 112,200 comb-lines. These results provide a pathway to further integration with the developing high repetition rate frequency comb lasers for compact sensors with applications in chip-based chemical analysis and spectroscopy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا