Do you want to publish a course? Click here

Minor Constraint Disturbances for Deep Semi-supervised Learning

113   0   0.0 ( 0 )
 Added by Jielei Chu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In high-dimensional data space, semi-supervised feature learning based on Euclidean distance shows instability under a broad set of conditions. Furthermore, the scarcity and high cost of labels prompt us to explore new semi-supervised learning methods with the fewest labels. In this paper, we develop a novel Minor Constraint Disturbances-based Deep Semi-supervised Feature Learning framework (MCD-DSFL) from the perspective of probability distribution for feature representation. There are two fundamental modules in the proposed framework: one is a Minor Constraint Disturbances-based restricted Boltzmann machine with Gaussian visible units (MCDGRBM) for modelling continuous data and the other is a Minor Constraint Disturbances-based restricted Boltzmann machine (MCDRBM) for modelling binary data. The Minor Constraint Disturbances (MCD) consist of less instance-level constraints which are produced by only two randomly selected labels from each class. The Kullback-Leibler (KL) divergences of the MCD are fused into the Contrastive Divergence (CD) learning for training the proposed MCDGRBM and MCDRBM models. Then, the probability distributions of hidden layer features are as similar as possible in the same class and they are as dissimilar as possible in the different classes simultaneously. Despite the weak influence of the MCD for our shallow models (MCDGRBM and MCDRBM), the proposed deep MCD-DSFL framework improves the representation capability significantly under its leverage effect. The semi-supervised strategy based on the KL divergence of the MCD significantly reduces the reliance on the labels and improves the stability of the semi-supervised feature learning in high-dimensional space simultaneously.



rate research

Read More

While neural networks for learning representation of multi-view data have been previously proposed as one of the state-of-the-art multi-view dimension reduction techniques, how to make the representation discriminative with only a small amount of labeled data is not well-studied. We introduce a semi-supervised neural network model, named Multi-view Discriminative Neural Network (MDNN), for multi-view problems. MDNN finds nonlinear view-specific mappings by projecting samples to a common feature space using multiple coupled deep networks. It is capable of leveraging both labeled and unlabeled data to project multi-view data so that samples from different classes are separated and those from the same class are clustered together. It also uses the inter-view correlation between views to exploit the available information in both the labeled and unlabeled data. Extensive experiments conducted on four datasets demonstrate the effectiveness of the proposed algorithm for multi-view semi-supervised learning.
In real-world applications, it is often expensive and time-consuming to obtain labeled examples. In such cases, knowledge transfer from related domains, where labels are abundant, could greatly reduce the need for extensive labeling efforts. In this scenario, transfer learning comes in hand. In this paper, we propose Deep Variational Transfer (DVT), a variational autoencoder that transfers knowledge across domains using a shared latent Gaussian mixture model. Thanks to the combination of a semi-supervised ELBO and parameters sharing across domains, we are able to simultaneously: (i) align all supervised examples of the same class into the same latent Gaussian Mixture component, independently from their domain; (ii) predict the class of unsupervised examples from different domains and use them to better model the occurring shifts. We perform tests on MNIST and USPS digits datasets, showing DVTs ability to perform transfer learning across heterogeneous datasets. Additionally, we present DVTs top classification performances on the MNIST semi-supervised learning challenge. We further validate DVT on a astronomical datasets. DVT achieves states-of-the-art classification performances, transferring knowledge across real stars surveys datasets, EROS, MACHO and HiTS, . In the worst performance, we double the achieved F1-score for rare classes. These experiments show DVTs ability to tackle all major challenges posed by transfer learning: different covariate distributions, different and highly imbalanced class distributions and different feature spaces.
Data augmentation is usually used by supervised learning approaches for offline writer identification, but such approaches require extra training data and potentially lead to overfitting errors. In this study, a semi-supervised feature learning pipeline was proposed to improve the performance of writer identification by training with extra unlabeled data and the original labeled data simultaneously. Specifically, we proposed a weighted label smoothing regularization (WLSR) method for data augmentation, which assigned the weighted uniform label distribution to the extra unlabeled data. The WLSR method could regularize the convolutional neural network (CNN) baseline to allow more discriminative features to be learned to represent the properties of different writing styles. The experimental results on well-known benchmark datasets (ICDAR2013 and CVL) showed that our proposed semi-supervised feature learning approach could significantly improve the baseline measurement and perform competitively with existing writer identification approaches. Our findings provide new insights into offline write identification.
While Semi-supervised learning has gained much attention in computer vision on image data, yet limited research exists on its applicability in the time series domain. In this work, we investigate the transferability of state-of-the-art deep semi-supervised models from image to time series classification. We discuss the necessary model adaptations, in particular an appropriate model backbone architecture and the use of tailored data augmentation strategies. Based on these adaptations, we explore the potential of deep semi-supervised learning in the context of time series classification by evaluating our methods on large public time series classification problems with varying amounts of labelled samples. We perform extensive comparisons under a decidedly realistic and appropriate evaluation scheme with a unified reimplementation of all algorithms considered, which is yet lacking in the field. We find that these transferred semi-supervised models show significant performance gains over strong supervised, semi-supervised and self-supervised alternatives, especially for scenarios with very few labelled samples.
In this work, we propose a simple yet effective meta-learning algorithm in semi-supervised learning. We notice that most existing consistency-based approaches suffer from overfitting and limited model generalization ability, especially when training with only a small number of labeled data. To alleviate this issue, we propose a learn-to-generalize regularization term by utilizing the label information and optimize the problem in a meta-learning fashion. Specifically, we seek the pseudo labels of the unlabeled data so that the model can generalize well on the labeled data, which is formulated as a nested optimization problem. We address this problem using the meta-gradient that bridges between the pseudo label and the regularization term. In addition, we introduce a simple first-order approximation to avoid computing higher-order derivatives and provide theoretic convergence analysis. Extensive evaluations on the SVHN, CIFAR, and ImageNet datasets demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا