Do you want to publish a course? Click here

Analyzing Visual Representations in Embodied Navigation Tasks

192   0   0.0 ( 0 )
 Added by Erik Wijmans
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent advances in deep reinforcement learning require a large amount of training data and generally result in representations that are often over specialized to the target task. In this work, we present a methodology to study the underlying potential causes for this specialization. We use the recently proposed projection weighted Canonical Correlation Analysis (PWCCA) to measure the similarity of visual representations learned in the same environment by performing different tasks. We then leverage our proposed methodology to examine the task dependence of visual representations learned on related but distinct embodied navigation tasks. Surprisingly, we find that slight differences in task have no measurable effect on the visual representation for both SqueezeNet and ResNet architectures. We then empirically demonstrate that visual representations learned on one task can be effectively transferred to a different task.



rate research

Read More

It is fundamental for personal robots to reliably navigate to a specified goal. To study this task, PointGoal navigation has been introduced in simulated Embodied AI environments. Recent advances solve this PointGoal navigation task with near-perfect accuracy (99.6% success) in photo-realistically simulated environments, assuming noiseless egocentric vision, noiseless actuation, and most importantly, perfect localization. However, under realistic noise models for visual sensors and actuation, and without access to a GPS and Compass sensor, the 99.6%-success agents for PointGoal navigation only succeed with 0.3%. In this work, we demonstrate the surprising effectiveness of visual odometry for the task of PointGoal navigation in this realistic setting, i.e., with realistic noise models for perception and actuation and without access to GPS and Compass sensors. We show that integrating visual odometry techniques into navigation policies improves the state-of-the-art on the popular Habitat PointNav benchmark by a large margin, improving success from 64.5% to 71.7% while executing 6.4 times faster.
Passive visual systems typically fail to recognize objects in the amodal setting where they are heavily occluded. In contrast, humans and other embodied agents have the ability to move in the environment, and actively control the viewing angle to better understand object shapes and semantics. In this work, we introduce the task of Embodied Visual Recognition (EVR): An agent is instantiated in a 3D environment close to an occluded target object, and is free to move in the environment to perform object classification, amodal object localization, and amodal object segmentation. To address this, we develop a new model called Embodied Mask R-CNN, for agents to learn to move strategically to improve their visual recognition abilities. We conduct experiments using the House3D environment. Experimental results show that: 1) agents with embodiment (movement) achieve better visual recognition performance than passive ones; 2) in order to improve visual recognition abilities, agents can learn strategical moving paths that are different from shortest paths.
We propose associating language utterances to 3D visual abstractions of the scene they describe. The 3D visual abstractions are encoded as 3-dimensional visual feature maps. We infer these 3D visual scene feature maps from RGB images of the scene via view prediction: when the generated 3D scene feature map is neurally projected from a camera viewpoint, it should match the corresponding RGB image. We present generative models that condition on the dependency tree of an utterance and generate a corresponding visual 3D feature map as well as reason about its plausibility, and detector models that condition on both the dependency tree of an utterance and a related image and localize the object referents in the 3D feature map inferred from the image. Our model outperforms models of language and vision that associate language with 2D CNN activations or 2D images by a large margin in a variety of tasks, such as, classifying plausibility of utterances, detecting referential expressions, and supplying rewards for trajectory optimization of object placement policies from language instructions. We perform numerous ablations and show the improved performance of our detectors is due to its better generalization across camera viewpoints and lack of object interferences in the inferred 3D feature space, and the improved performance of our generators is due to their ability to spatially reason about objects and their configurations in 3D when mapping from language to scenes.
Autonomous agents must learn to collaborate. It is not scalable to develop a new centralized agent every time a tasks difficulty outpaces a single agents abilities. While multi-agent collaboration research has flourished in gridworld-like environments, relatively little work has considered visually rich domains. Addressing this, we introduce the novel task FurnMove in which agents work together to move a piece of furniture through a living room to a goal. Unlike existing tasks, FurnMove requires agents to coordinate at every timestep. We identify two challenges when training agents to complete FurnMove: existing decentralized action sampling procedures do not permit expressive joint action policies and, in tasks requiring close coordination, the number of failed actions dominates successful actions. To confront these challenges we introduce SYNC-policies (synchronize your actions coherently) and CORDIAL (coordination loss). Using SYNC-policies and CORDIAL, our agents achieve a 58% completion rate on FurnMove, an impressive absolute gain of 25 percentage points over competitive decentralized baselines. Our dataset, code, and pretrained models are available at https://unnat.github.io/cordial-sync .
Semantic cues and statistical regularities in real-world environment layouts can improve efficiency for navigation in novel environments. This paper learns and leverages such semantic cues for navigating to objects of interest in novel environments, by simply watching YouTube videos. This is challenging because YouTube videos dont come with labels for actions or goals, and may not even showcase optimal behavior. Our method tackles these challenges through the use of Q-learning on pseudo-labeled transition quadruples (image, action, next image, reward). We show that such off-policy Q-learning from passive data is able to learn meaningful semantic cues for navigation. These cues, when used in a hierarchical navigation policy, lead to improved efficiency at the ObjectGoal task in visually realistic simulations. We observe a relative improvement of 15-83% over end-to-end RL, behavior cloning, and classical methods, while using minimal direct interaction.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا