Do you want to publish a course? Click here

Educational Question Mining At Scale: Prediction, Analysis and Personalization

101   0   0.0 ( 0 )
 Added by Zichao Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Online education platforms enable teachers to share a large number of educational resources such as questions to form exercises and quizzes for students. With large volumes of available questions, it is important to have an automated way to quantify their properties and intelligently select them for students, enabling effective and personalized learning experiences. In this work, we propose a framework for mining insights from educational questions at scale. We utilize the state-of-the-art Bayesian deep learning method, in particular partial variational auto-encoders (p-VAE), to analyze real students answers to a large collection of questions. Based on p-VAE, we propose two novel metrics that quantify question quality and difficulty, respectively, and a personalized strategy to adaptively select questions for students. We apply our proposed framework to a real-world dataset with tens of thousands of questions and tens of millions of answers from an online education platform. Our framework not only demonstrates promising results in terms of statistical metrics but also obtains highly consistent results with domain experts evaluation.



rate research

Read More

News recommendation and personalization is not a solved problem. People are growing concerned of their data being collected in excess in the name of personalization and the usage of it for purposes other than the ones they would think reasonable. Our experience in building personalization products for publishers while adhering to safeguard user privacy led us to investigate more on the user perspective of privacy and personalization. We conducted a survey to explore peoples experience with personalization and privacy and the viewpoints of different age groups. In this paper, we share our major findings with publishers and the community that can inform algorithmic design and implementation of the next generation of news recommender systems, which must put the human at its core and reach a balance between personalization experiences and privacy to reap the benefits of both.
Peer reviewing is a central process in modern research and essential for ensuring high quality and reliability of published work. At the same time, it is a time-consuming process and increasing interest in emerging fields often results in a high review workload, especially for senior researchers in this area. How to cope with this problem is an open question and it is vividly discussed across all major conferences. In this work, we propose an Argument Mining based approach for the assistance of editors, meta-reviewers, and reviewers. We demonstrate that the decision process in the field of scientific publications is driven by arguments and automatic argument identification is helpful in various use-cases. One of our findings is that arguments used in the peer-review process differ from arguments in other domains making the transfer of pre-trained models difficult. Therefore, we provide the community with a new peer-review dataset from different computer science conferences with annotated arguments. In our extensive empirical evaluation, we show that Argument Mining can be used to efficiently extract the most relevant parts from reviews, which are paramount for the publication decision. The process remains interpretable since the extracted arguments can be highlighted in a review without detaching them from their context.
964 - Roy Meissner , Andreas Thor 2021
EAs.LiT is an e-assessment management and analysis software for which contextual requirements and usage scenarios changed over time. Based on these factors and further development activities, the decision was made to adopt a microservice architecture for EAs.LiT version 2 in order to increase its flexibility to adapt to new and changed circumstances. This architectural style and a few adopted technologies, like RDF as a data format, enabled an eased implementation of various use cases. Thus we consider the microservice architecture productive and recommend it for usage in other educational projects. The specific architecture of EAs.LiT version 2 is presented within this article, targeting to enable other educational projects to adopt it by using our work as a foundation or template.
Public educational systems operate thousands of buildings with vastly different characteristics in terms of size, age, location, construction, thermal behavior and user communities. Their strategic planning and sustainable operation is an extremely complex and requires quantitative evidence on the performance of buildings such as the interaction of indoor-outdoor environment. Internet of Things (IoT) deployments can provide the necessary data to evaluate, redesign and eventually improve the organizational and managerial measures. In this work a data mining approach is presented to analyze the sensor data collected over a period of 2 years from an IoT infrastructure deployed over 18 school buildings spread in Greece, Italy and Sweden. The real-world evaluation indicates that data mining on sensor data can provide critical insights to building managers and custodial staff about ways to lower a buildings energy footprint through effectively managing building operations.
Recently, there have been increasing calls for computer science curricula to complement existing technical training with topics related to Fairness, Accountability, Transparency, and Ethics. In this paper, we present Value Card, an educational toolkit to inform students and practitioners of the social impacts of different machine learning models via deliberation. This paper presents an early use of our approach in a college-level computer science course. Through an in-class activity, we report empirical data for the initial effectiveness of our approach. Our results suggest that the use of the Value Cards toolkit can improve students understanding of both the technical definitions and trade-offs of performance metrics and apply them in real-world contexts, help them recognize the significance of considering diverse social values in the development of deployment of algorithmic systems, and enable them to communicate, negotiate and synthesize the perspectives of diverse stakeholders. Our study also demonstrates a number of caveats we need to consider when using the different variants of the Value Cards toolkit. Finally, we discuss the challenges as well as future applications of our approach.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا