Do you want to publish a course? Click here

On Mining IoT Data for Evaluating the Operation of Public Educational Buildings

71   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Public educational systems operate thousands of buildings with vastly different characteristics in terms of size, age, location, construction, thermal behavior and user communities. Their strategic planning and sustainable operation is an extremely complex and requires quantitative evidence on the performance of buildings such as the interaction of indoor-outdoor environment. Internet of Things (IoT) deployments can provide the necessary data to evaluate, redesign and eventually improve the organizational and managerial measures. In this work a data mining approach is presented to analyze the sensor data collected over a period of 2 years from an IoT infrastructure deployed over 18 school buildings spread in Greece, Italy and Sweden. The real-world evaluation indicates that data mining on sensor data can provide critical insights to building managers and custodial staff about ways to lower a buildings energy footprint through effectively managing building operations.



rate research

Read More

Current radio frequency (RF) sensors at the Edge lack the computational resources to support practical, in-situ training for intelligent spectrum monitoring, and sensor data classification in general. We propose a solution via Deep Delay Loop Reservoir Computing (DLR), a processing architecture that supports general machine learning algorithms on compact mobile devices by leveraging delay-loop reservoir computing in combination with innovative electrooptical hardware. With both digital and photonic realizations of our design of the loops, DLR delivers reductions in form factor, hardware complexity and latency, compared to the State-of-the-Art (SoA). The main impact of the reservoir is to project the input data into a higher dimensional space of reservoir state vectors in order to linearly separate the input classes. Once the classes are well separated, traditionally complex, power-hungry classification models are no longer needed for the learning process. Yet, even with simple classifiers based on Ridge regression (RR), the complexity grows at least quadratically with the input size. Hence, the hardware reduction required for training on compact devices is in contradiction with the large dimension of state vectors. DLR employs a RR-based classifier to exceed the SoA accuracy, while further reducing power consumption by leveraging the architecture of parallel (split) loops. We present DLR architectures composed of multiple smaller loops whose state vectors are linearly combined to create a lower dimensional input into Ridge regression. We demonstrate the advantages of using DLR for two distinct applications: RF Specific Emitter Identification (SEI) for IoT authentication, and wireless protocol recognition for IoT situational awareness.
Online education platforms enable teachers to share a large number of educational resources such as questions to form exercises and quizzes for students. With large volumes of available questions, it is important to have an automated way to quantify their properties and intelligently select them for students, enabling effective and personalized learning experiences. In this work, we propose a framework for mining insights from educational questions at scale. We utilize the state-of-the-art Bayesian deep learning method, in particular partial variational auto-encoders (p-VAE), to analyze real students answers to a large collection of questions. Based on p-VAE, we propose two novel metrics that quantify question quality and difficulty, respectively, and a personalized strategy to adaptively select questions for students. We apply our proposed framework to a real-world dataset with tens of thousands of questions and tens of millions of answers from an online education platform. Our framework not only demonstrates promising results in terms of statistical metrics but also obtains highly consistent results with domain experts evaluation.
As we are about to embark upon the highly hyped Society 5.0, powered by the Internet of Things (IoT), traditional ways to monitor human heart signals for tracking cardio-vascular conditions are challenging, particularly in remote healthcare settings. On the merits of low power consumption, portability, and non-intrusiveness, there are no suitable IoT solutions that can provide information comparable to the conventional Electrocardiography (ECG). In this paper, we propose an IoT device utilizing a spintronic ultra-sensitive sensor that measures the magnetic fields produced by cardio-vascular electrical activity, i.e. Magentocardiography (MCG). After that, we treat the low-frequency noise generated by the sensors, which is also a challenge for most other sensors dealing with low-frequency bio-magnetic signals. Instead of relying on generic signal processing techniques such as averaging or filtering, we employ deep-learning training on bio-magnetic signals. Using an existing dataset of ECG records, MCG labels are synthetically constructed. A unique deep learning structure composed of combined Convolutional Neural Network (CNN) with Gated Recurrent Unit (GRU) is trained using the labeled data moving through a striding window, which is able to smartly capture and eliminate the noise features. Simulation results are reported to evaluate the effectiveness of the proposed method that demonstrates encouraging performance.
Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as device-to-device (D2D) caching helpers. With the goal to improve reliability of high-rate millimeter-wave (mmWave) data connections, we introduce the alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability.
In this study, the problem of fault zone detection of distance relaying in FACTS-based transmission lines is analyzed. Existence of FACTS devices on the transmission line, when they are included in the fault zone, from the distance relay point of view, causes different problems in determining the exact location of the fault by changing the impedance seen by the relay. The extent of these changes depends on the parameters that have been set in FACTS devices. To solve the problem associated with these compensators, two instruments for separation and analysis of three-line currents, from the relay point of view at fault instance, have been utilized. The wavelet transform was used to separate the high-frequency components of the three-line currents, and the support vector machine (using methods for multi-class usage) was used for classification of fault location into three protection regions of distance relay. Besides, to investigate the effects of TCSC location on fault zone detection of distance relay, two places, one in fifty percent of line length and the other in seventy-five percent of line length, have been considered as two scenarios for confirmation of the proposed method. Simulations indicate that this method is effective in the protection of FACTS-based transmission lines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا