Do you want to publish a course? Click here

Semi-adsorption-controlled growth window for half Heusler FeVSb epitaxial films

86   0   0.0 ( 0 )
 Added by Jason Kawasaki
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic, magnetic, thermoelectric, and topological properties of Heusler compounds (composition $XYZ$ or $X_2 YZ$) are highly sensitive to stoichiometry and defects. Here we establish the existence and experimentally map the bounds of a textit{semi} adsorption-controlled growth window for semiconducting half Heusler FeVSb films, grown by molecular beam epitaxy (MBE). We show that due to the high volatility of Sb, the Sb stoichiometry is self-limiting for a finite range of growth temperatures and Sb fluxes, similar to the growth of III-V semiconductors such as GaSb and GaAs. Films grown within this window are nearly structurally indistinguishable by X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED). The highest electron mobility and lowest background carrier density are obtained towards the Sb-rich bound of the window, suggesting that Sb-vacancies may be a common defect. Similar textit{semi} adsorption-controlled bounds are expected for other ternary intermetallics that contain a volatile species $Z=${Sb, As, Bi}, e.g., CoTiSb, LuPtSb, GdPtBi, and NiMnSb. However, outstanding challenges remain in controlling the remaining Fe/V ($X/Y$) transition metal stoichiometry.



rate research

Read More

The metastable orthorhombic phase of hafnia is generally obtained in polycrystalline films, whereas in epitaxial films, its formation has been much less investigated. We have grown Hf0.5Zr0.5O2 films by pulsed laser deposition, and the growth window (temperature and oxygen pressure during deposition and film thickness) for epitaxial stabilization of the ferroelectric phase is mapped. The remnant ferroelectric polarization, up to around 24 uC/cm2, depends on the amount of orthorhombic phase and interplanar spacing and increases with temperature and pressure for a fixed film thickness. The leakage current decreases with an increase in thickness or temperature, or when decreasing oxygen pressure. The coercive electric field (EC) depends on thickness (t) according to the coercive electric field (Ec) - thickness (t)-2/3 scaling, which is observed for the first time in ferroelectric hafnia, and the scaling extends to thicknesses down to around 5 nm. The proven ability to tailor the functional properties of high-quality epitaxial ferroelectric Hf0.5Zr0.5O2 films paves the way toward understanding their ferroelectric properties and prototyping devices.
Electronic correlations are crucial to the low energy physics of metallic systems with localized $d$ and $f$ states; however, their effect on band insulators and semiconductors is typically negligible. Here, we measure the electronic structure of the half-Heusler compound FeVSb, a band insulator with filled shell configuration of 18 valence electrons per formula unit ($s^2 p^6 d^{10}$). Angle-resolved photoemission spectroscopy (ARPES) reveals a mass renormalization of $m^{*}/m_{bare}= 1.4$, where $m^{*}$ is the measured effective mass and $m_{bare}$ is the mass from density functional theory (DFT) calculations with no added on-site Coulomb repulsion. Our measurements are in quantitative agreement with dynamical mean field theory (DMFT) calculations, highlighting the many-body origin of the mass renormalization. This mass renormalization lies in dramatic contrast to other filled shell intermetallics, including the thermoelectric materials CoTiSb and NiTiSn; and has a similar origin to that in FeSi, where Hunds coupling induced fluctuations across the gap can explain a dynamical self-energy and correlations. Our work calls for a re-thinking of the role of correlations and Hunds coupling in intermetallic band insulators.
The combination of ferromagnetism and semiconducting behavior offers an avenue for realizing novel spintronics and spin-enhanced thermoelectrics. Here we demonstrate the synthesis of doped and nanocomposite half Heusler Fe$_{1+x}$VSb films by molecular beam epitaxy. For dilute excess Fe ($x < 0.1$), we observe a decrease in the Hall electron concentration and no secondary phases in X-ray diffraction, consistent with Fe doping into FeVSb. Magnetotransport measurements suggest weak ferromagnetism that onsets at a temperature of $T_{c} approx$ 5K. For higher Fe content ($x > 0.1$), ferromagnetic Fe nanostructures precipitate from the semiconducting FeVSb matrix. The Fe/FeVSb interfaces are epitaxial, as observed by transmission electron microscopy and X-ray diffraction. Magnetotransport measurements suggest proximity-induced magnetism in the FeVSb, from the Fe/FeVSb interfaces, at an onset temperature of $T_{c} approx$ 20K.
281 - S. Yamada , K. Tanikawa , M. Miyao 2012
We demonstrate high-quality epitaxial germanium (Ge) films on a metallic silicide, Fe3Si, grown directly on a Ge(111) substrate. Using molecular beam epitaxy techniques, we can obtain an artificially controlled arrangement of silicon (Si) or iron (Fe) atoms at the surface on Fe3Si(111). The Si-terminated Fe3Si(111) surface enables us to grow two-dimensional epitaxial Ge films, whereas the Fe-terminated one causes the three-dimensional epitaxial growth of Ge films. The high-quality Ge grown on the Si-terminated surface has almost no strain, meaning that the Ge films are not grown on the low-temperature-grown Si buffer layer but on the lattice matched metallic Fe3Si. This study will open a new way for vertical-type Ge-channel transistors with metallic source/drain contacts.
We report the growth of the intrinsic magnetic topological system MnTe(Bi2Te3)n by molecular beam epitaxy. By mapping the temperature and the Bi:Mn flux ratio, it is shown that there is a narrow growth window for the n=1 phase MnBi2Te4 with 2.0<Bi:Mn<2.6 at 225 {deg}C. Here the films are stoichiometric and excess Bi and Te is not incorporated. At higher flux ratios (Bi:Mn>4.5) it is found that the n = 2 MnBi4Te7 phase is stabilized. Transport measurements indicate that the MnBi2Te4 and MnBi4Te7 undergo magnetic transitions around 25 K, and 10 K, respectively, consistent with antiferromagnetic phases found in the bulk. Further, for Mn-rich conditions (Bi:Mn<2), ferromagnetism emerges that exhibits a clear hysteretic state in the Hall effect, which likely indicates Mn-doped MnBi2Te4. Understanding how to grow ternary chalcogenide phases is the key to synthesizing new materials and to interface magnetism and topology, which together are routes to realize and control exotic quantum phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا