No Arabic abstract
Quantum Metrology is one of the most promising application of quantum technologies. The aim of this research field is the estimation of unknown parameters exploiting quantum resources, whose application can lead to enhanced performances with respect to classical strategies. Several physical quantum systems can be employed to develop quantum sensors, and photonic systems represent ideal probes for a large number of metrological tasks. Here we review the basic concepts behind quantum metrology and then focus on the application of photonic technology for this task, with particular attention to phase estimation. We describe the current state of the art in the field in terms of platforms and quantum resources. Furthermore, we present the research area of multiparameter quantum metrology, where multiple parameters have to be estimated at the same time. We conclude by discussing the current experimental and theoretical challenges, and the open questions towards implementation of photonic quantum sensors with quantum-enhanced performances in the presence of noise.
Photonic states with large and fixed photon numbers, such as Fock states, enable quantum-enhanced metrology but remain an experimentally elusive resource. A potentially simple, deterministic and scalable way to generate these states consists of fully exciting $N$ quantum emitters equally coupled to a common photonic reservoir, which leads to a collective decay known as Dicke superradiance. The emitted $N$-photon state turns out to be a highly entangled multimode state, and to characterise its metrological properties in this work we: (i) develop theoretical tools to compute the Quantum Fisher Information of general multimode photonic states; (ii) use it to show that Dicke superradiant photons in 1D waveguides achieve Heisenberg scaling, which can be saturated by a parity measurement; (iii) and study the robustness of these states to experimental limitations in state-of-art atom-waveguide QED setups.
Interferometric phase measurement is widely used to precisely determine quantities such as length, speed, and material properties. Without quantum correlations, the best phase sensitivity $Deltavarphi$ achievable using $n$ photons is the shot noise limit (SNL), $Deltavarphi=1/sqrt{n}$. Quantum-enhanced metrology promises better sensitivity, but despite theoretical proposals stretching back decades, no measurement using photonic (i.e. definite photon number) quantum states has truly surpassed the SNL. Rather, all such demonstrations --- by discounting photon loss, detector inefficiency, or other imperfections --- have considered only a subset of the photons used. Here, we use an ultra-high efficiency photon source and detectors to perform unconditional entanglement-enhanced photonic interferometry. Sampling a birefringent phase shift, we demonstrate precision beyond the SNL without artificially correcting our results for loss and imperfections. Our results enable quantum-enhanced phase measurements at low photon flux and open the door to the next generation of optical quantum metrology advances.
Quantum metrology research promises approaches to build new sensors that achieve the ultimate level of precision measurement and perform fundamentally better than modern sensors. Practical schemes that tolerate realistic fabrication imperfections and environmental noise are required in order to realise quantum-enhanced sensors and to enable their real-world application. We have demonstrated the key enabling principles of a practical, loss-tolerant approach to photonic quantum metrology designed to harness all multi-photon components in spontaneous parametric downconversion---a method for generating multiple photons that we show requires no further fundamental state engineering for use in practical quantum metrology. We observe a quantum advantage of 28% in precision measurement of optical phase using the four-photon detection component of this scheme, despite 83% system loss. This opens the way to new quantum sensors based on current quantum-optical capabilities.
Conventional strategies of quantum metrology are built upon POVMs, thereby possessing several general features, including the demolition of the state to be measured, the need of performing a number of measurements, and the degradation of performance under decoherence and dissipation. Here, we propose an innovative measurement scheme, called dissipative adiabatic measurements (DAMs), based on which, we further develop an approach to estimation of parameters characterizing dissipative processes. Unlike a POVM, whose outcome is one of the eigenvalues of an observable, a DAM yields the expectation value of the observable as its outcome, without collapsing the state to be measured. By virtue of the very nature of DAMs, our approach is capable of solving the estimation problem in a state-protective fashion with only $M$ measurements, where $M$ is the number of parameters to be estimated. More importantly, contrary to the common wisdom, it embraces decoherence and dissipation as beneficial effects and offers a Heisenberg-like scaling of precision, thus outperforming conventional strategies. Our DAM-based approach is direct, efficient, and expected to be immensely useful in the context of dissipative quantum information processing.
Quantum metrology fundamentally relies upon the efficient management of quantum uncertainties. We show that, under equilibrium conditions, the management of quantum noise becomes extremely flexible around the quantum critical point of a quantum many-body system: this is due to the critical divergence of quantum fluctuations of the order parameter, which, via Heisenbergs inequalities, may lead to the critical suppression of the fluctuations in conjugate observables. Taking the quantum Ising model as the paradigmatic incarnation of quantum phase transitions, we show that it exhibits quantum critical squeezing of one spin component, providing a scaling for the precision of interferometric parameter estimation which, in dimensions $d geq 2$, lies in between the standard quantum limit and the Heisenberg limit. Quantum critical squeezing saturates the maximum metrological gain allowed by the quantum Fisher information in $d=infty$ (or with infinite-range interactions) at all temperatures, and it approaches closely the bound in a broad range of temperatures in $d=2$ and 3. This demonstrates the immediate metrological potential of equilibrium many-body states close to quantum criticality, which are accessible emph{e.g.} to atomic quantum simulators via elementary adiabatic protocols.