No Arabic abstract
A machine learning algorithm is developed to forecast the CO2 emission intensities in electrical power grids in the Danish bidding zone DK2, distinguishing between average and marginal emissions. The analysis was done on data set comprised of a large number (473) of explanatory variables such as power production, demand, import, weather conditions etc. collected from selected neighboring zones. The number was reduced to less than 50 using both LASSO (a penalized linear regression analysis) and a forward feature selection algorithm. Three linear regression models that capture different aspects of the data (non-linearities and coupling of variables etc.) were created and combined into a final model using Softmax weighted average. Cross-validation is performed for debiasing and autoregressive moving average model (ARIMA) implemented to correct the residuals, making the final model the variant with exogenous inputs (ARIMAX). The forecasts with the corresponding uncertainties are given for two time horizons, below and above six hours. Marginal emissions came up independent of any conditions in the DK2 zone, suggesting that the marginal generators are located in the neighbouring zones. The developed methodology can be applied to any bidding zone in the European electricity network without requiring detailed knowledge about the zone.
Accurate short-term load forecasting is essential for efficient operation of the power sector. Predicting load at a fine granularity such as individual households or buildings is challenging due to higher volatility and uncertainty in the load. In aggregate loads such as at grids level, the inherent stochasticity and fluctuations are averaged-out, the problem becomes substantially easier. We propose an approach for short-term load forecasting at individual consumers (households) level, called Forecasting using Matrix Factorization (FMF). FMF does not use any consumers demographic or activity patterns information. Therefore, it can be applied to any locality with the readily available smart meters and weather data. We perform extensive experiments on three benchmark datasets and demonstrate that FMF significantly outperforms the computationally expensive state-of-the-art methods for this problem. We achieve up to 26.5% and 24.4 % improvement in RMSE over Regression Tree and Support Vector Machine, respectively and up to 36% and 73.2% improvement in MAPE over Random Forest and Long Short-Term Memory neural network, respectively.
Appliance-level load forecasting plays a critical role in residential energy management, besides having significant importance for ancillary services performed by the utilities. In this paper, we propose to use an LSTM-based sequence-to-sequence (seq2seq) learning model that can capture the load profiles of appliances. We use a real dataset collected fromfour residential buildings and compare our proposed schemewith three other techniques, namely VARMA, Dilated One Dimensional Convolutional Neural Network, and an LSTM model.The results show that the proposed LSTM-based seq2seq model outperforms other techniques in terms of prediction error in most cases.
Smooth power generation from solar stations demand accurate, reliable and efficient forecast of solar energy for optimal integration to cater market demand; however, the implicit instability of solar energy production may cause serious problems for the smooth power generation. We report daily prediction of solar energy by exploiting the strength of machine learning techniques to capture and analyze complicated behavior of enormous features effectively. For this purpose, dataset comprising of 98 solar stations has been taken from energy competition of American Meteorological Society (AMS) for predicting daily solar energy. Forecast models of base line regressors including linear, ridge, lasso, decision tree, random forest and artificial neural networks have been implemented on the AMS solar dataset. Grid size is converted into two sections: 16x9 and 10x4 to ascertain attributes contributing more towards the generated power from densely located stations on global ensemble forecast system (GEFS). To evaluate the models, statistical measures of prediction error in terms of RMSE, MAE and R2_score have been analyzed and compared with the existing techniques. It has been observed that improved accuracy is achieved through random forest and ridge regressor for both grid sizes in contrast to all other proposed methods. Stability and reliability of the proposed schemes are evaluated on a single solar station as well as on multiple independent runs.
Short-term passenger flow forecasting is an essential component in urban rail transit operation. Emerging deep learning models provide good insight into improving prediction precision. Therefore, we propose a deep learning architecture combining the residual network (ResNet), graph convolutional network (GCN), and long short-term memory (LSTM) (called ResLSTM) to forecast short-term passenger flow in urban rail transit on a network scale. First, improved methodologies of the ResNet, GCN, and attention LSTM models are presented. Then, the model architecture is proposed, wherein ResNet is used to capture deep abstract spatial correlations between subway stations, GCN is applied to extract network topology information, and attention LSTM is used to extract temporal correlations. The model architecture includes four branches for inflow, outflow, graph-network topology, as well as weather conditions and air quality. To the best of our knowledge, this is the first time that air-quality indicators have been taken into account, and their influences on prediction precision quantified. Finally, ResLSTM is applied to the Beijing subway using three time granularities (10, 15, and 30 min) to conduct short-term passenger flow forecasting. A comparison of the prediction performance of ResLSTM with those of many state-of-the-art models illustrates the advantages and robustness of ResLSTM. Moreover, a comparison of the prediction precisions obtained for time granularities of 10, 15, and 30 min indicates that prediction precision increases with increasing time granularity. This study can provide subway operators with insight into short-term passenger flow forecasting by leveraging deep learning models.
Prediction of power outages caused by convective storms which are highly localised in space and time is of crucial importance to power grid operators. We propose a new machine learning approach to predict the damage caused by storms. This approach hinges identifying and tracking of storm cells using weather radar images on the application of machine learning techniques. Overall prediction process consists of identifying storm cells from CAPPI weather radar images by contouring them with a solid 35 dBZ threshold, predicting a track of storm cells and classifying them based on their damage potential to power grid operators. Tracked storm cells are then classified by combining data obtained from weather radar, ground weather observations and lightning detectors. We compare random forest classifiers and deep neural networks as alternative methods to classify storm cells. The main challenge is that the training data are heavily imbalanced as extreme weather events are rare.