Do you want to publish a course? Click here

Technical report: Training Mixture Density Networks with full covariance matrices

69   0   0.0 ( 0 )
 Added by Jakob Kruse
 Publication date 2020
and research's language is English
 Authors Jakob Kruse




Ask ChatGPT about the research

Mixture Density Networks are a tried and tested tool for modelling conditional probability distributions. As such, they constitute a great baseline for novel approaches to this problem. In the standard formulation, an MDN takes some input and outputs parameters for a Gaussian mixture model with restrictions on the mixture components covariance. Since covariance between random variables is a central issue in the conditional modeling problems we were investigating, I derived and implemented an MDN formulation with unrestricted covariances. It is likely that this has been done before, but I could not find any resources online. For this reason, I have documented my approach in the form of this technical report, in hopes that it may be useful to others facing a similar situation.



rate research

Read More

129 - Oliver Markgraf , Daniel Stan , 2021
We study the problem of learning a finite union of integer (axis-aligned) hypercubes over the d-dimensional integer lattice, i.e., whose edges are parallel to the coordinate axes. This is a natural generalization of the classic problem in the computational learning theory of learning rectangles. We provide a learning algorithm with access to a minimally adequate teacher (i.e. membership and equivalence oracles) that solves this problem in polynomial-time, for any fixed dimension d. Over a non-fixed dimension, the problem subsumes the problem of learning DNF boolean formulas, a central open problem in the field. We have also provided extensions to handle infinite hypercubes in the union, as well as showing how subset queries could improve the performance of the learning algorithm in practice. Our problem has a natural application to the problem of monadic decomposition of quantifier-free integer linear arithmetic formulas, which has been actively studied in recent years. In particular, a finite union of integer hypercubes correspond to a finite disjunction of monadic predicates over integer linear arithmetic (without modulo constraints). Our experiments suggest that our learning algorithms substantially outperform the existing algorithms.
Formal verification of neural networks is an active topic of research, and recent advances have significantly increased the size of the networks that verification tools can handle. However, most methods are designed for verification of an idealized model of the actual network which works over real arithmetic and ignores rounding imprecisions. This idealization is in stark contrast to network quantization, which is a technique that trades numerical precision for computational efficiency and is, therefore, often applied in practice. Neglecting rounding errors of such low-bit quantized neural networks has been shown to lead to wrong conclusions about the networks correctness. Thus, the desired approach for verifying quantized neural networks would be one that takes these rounding errors into account. In this paper, we show that verifying the bit-exact implementation of quantized neural networks with bit-vector specifications is PSPACE-hard, even though verifying idealized real-valued networks and satisfiability of bit-vector specifications alone are each in NP. Furthermore, we explore several practical heuristics toward closing the complexity gap between idealized and bit-exact verification. In particular, we propose three techniques for making SMT-based verification of quantized neural networks more scalable. Our experiments demonstrate that our proposed methods allow a speedup of up to three orders of magnitude over existing approaches.
179 - Weiming Li , Jianfeng Yao 2017
By studying the family of $p$-dimensional scale mixtures, this paper shows for the first time a non trivial example where the eigenvalue distribution of the corresponding sample covariance matrix {em does not converge} to the celebrated Marv{c}enko-Pastur law. A different and new limit is found and characterized. The reasons of failure of the Marv{c}enko-Pastur limit in this situation are found to be a strong dependence between the $p$-coordinates of the mixture. Next, we address the problem of testing whether the mixture has a spherical covariance matrix. To analize the traditional Johns type test we establish a novel and general CLT for linear statistics of eigenvalues of the sample covariance matrix. It is shown that the Johns test and its recent high-dimensional extensions both fail for high-dimensional mixtures, precisely due to the different spectral limit above. As a remedy, a new test procedure is constructed afterwards for the sphericity hypothesis. This test is then applied to identify the covariance structure in model-based clustering. It is shown that the test has much higher power than the widely used ICL and BIC criteria in detecting non spherical component covariance matrices of a high-dimensional mixture.
Neural networks offer a versatile, flexible and accurate approach to loss reserving. However, such applications have focused primarily on the (important) problem of fitting accurate central estimates of the outstanding claims. In practice, properties regarding the variability of outstanding claims are equally important (e.g., quantiles for regulatory purposes). In this paper we fill this gap by applying a Mixture Density Network (MDN) to loss reserving. The approach combines a neural network architecture with a mixture Gaussian distribution to achieve simultaneously an accurate central estimate along with flexible distributional choice. Model fitting is done using a rolling-origin approach. Our approach consistently outperforms the classical over-dispersed model both for central estimates and quantiles of interest, when applied to a wide range of simulated environments of various complexity and specifications. We further extend the MDN approach by proposing two extensions. Firstly, we present a hybrid GLM-MDN approach called ResMDN. This hybrid approach balances the tractability and ease of understanding of a traditional GLM model on one hand, with the additional accuracy and distributional flexibility provided by the MDN on the other. We show that it can successfully improve the errors of the baseline ccODP, although there is generally a loss of performance when compared to the MDN in the examples we considered. Secondly, we allow for explicit projection constraints, so that actuarial judgement can be directly incorporated in the modelling process. Throughout, we focus on aggregate loss triangles, and show that our methodologies are tractable, and that they out-perform traditional approaches even with relatively limited amounts of data. We use both simulated data -- to validate properties, and real data -- to illustrate and ascertain practicality of the approaches.
495 - Emil Dolezal , Petr Seba 2008
We study the dependence of the spectral density of the covariance matrix ensemble on the power spectrum of the underlying multivariate signal. The white noise signal leads to the celebrated Marchenko-Pastur formula. We demonstrate results for some colored noise signals.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا