No Arabic abstract
We investigated the thermoelectric transport properties of EuNi2P2 and EuIr2Si2 in order to evaluate the relevance of Kondo interaction and valence fluctuations in these materials. While the thermal conductivities behave conventionally, the thermopower curves exhibit large values with pronounced maxima as typically observed in Ce- and Yb-based heavy-fermion materials. However, neither the positions of these maxima nor the absolute thermopower values at low temperature are in line with the heavy-fermion scenario and the moderately enhanced effective charge carrier masses. Instead, we may relate the thermopower in our materials to the temperature-dependent Eu valence by taking into account changes in the chemical potential. Our analysis confirms that valence fluctuations play an important role in EuNi2P2 and EuIr2Si2.
We have investigated the optical conductivity of the prominent valence fluctuating compounds EuIr2Si2 and EuNi2P2 in the infrared energy range to get new insights into the electronic properties of valence fluctuating systems. For both compounds we observe upon cooling the formation of a renormalized Drude response, a partial suppression of the optical conductivity below 100 meV and the appearance of a mid-infrared peak at 0.15 eV for EuIr2Si2 and at 0.13 eV for EuNi2P2. Most remarkably, our results show a strong similarity with the optical spectra reported for many Ce- or Yb-based heavy fermion metals and intermediate valence systems, although the phase diagrams and the temperature dependence of the valence differ strongly between Eu- and Ce-/Yb-systems. This suggests that the hybridization between 4f- and conduction electrons, which is responsible for the properties of Ce- and Yb-systems, plays an important role in valence fluctuating Eu-systems.
The compound EuPd2Si2 is a well-known valence-fluctuating compound with a largest variation of Eu valence in a narrow temperature interval (around 150 K). The ball-milled form of this compound was investigated to understand the Eu valence behavior in the nanoform. The compound is found to retain the ThCr2Si2-type tetragonal structure after ball-milling leading to a reduction in particle size, typically falling in the range 10 - 100 nm. We find that there is a qualitative change in the temperature dependence of magnetic susceptibility for such small particles, with respect to that known for bulk form. To understand this microscopically, Mossbauer spectra as a function of temperature were taken. The Mossbauer spectrum of the nanocrystalline compound is essentially divalent-like at room temperature, but becomes distinctly bimodal at all temperatures below 300 K, unlike that of the bulk form. That is, there is a progressive transfer of intensity from divalent position to trivalent position with a gradual decrease of temperature. We attribute it to a first-order valence transition, with extreme broadening by defects in the nano specimen. Thus, there is a qualitative change in the valence behavior in this compound as the particle size is reduced by ball-milling. Such a particle size study is reported for the first time for a Eu-based mixed-valent compound.
In a joint theoretical and experimental study we investigate the pressure dependence of the Eu valence in EuPd_3B_x (0 <= x <= 1). Density functional band structure calculations are combined with x-ray absorption and x-ray diffraction measurements under hydrostatic pressures up to 30 GPa. It is observed that the heterogenous mixed-valence state of Eu in EuPd_3B_x (x >= 0.2) can be suppressed partially in this pressure range. From the complementary measurements we conclude that the valence change in EuPd_3B_x is mainly driven by the number of additional valence electrons due to the insertion of boron, whereas the volume change is a secondary effect. A similar valence change of Eu in Eu_{1-x}La_xPd_3 is predicted for x >= 0.4, in line with the suggested electron count scenario.
We show herein fabrication and field-modulated thermopower for KTaO3 single-crystal based field-effect transistors (FETs). The KTaO3 FET exhibits field effect mobility of ~8 cm2/Vs, which is ~4 times larger than that of SrTiO3 FETs. The thermopower of the KTaO3 FET decreased from 600 to 220 microV/K by the application of gate electric field up to 1.5 MV/cm, ~400 microV/K below that of an SrTiO3 FET, clearly reflecting the smaller carrier effective mass of KTaO3.
A number of recent experiments report the low-temperature thermopower $alpha$ and specific heat coefficients $gamma=C_V/T$ of strongly correlated electron systems. Describing the charge and heat transport in a thermoelectric by transport equations, and assuming that the charge current and the heat current densities are proportional to the number density of the charge carriers, we obtain a simple mean-field relationship between $alpha$ and the entropy density $cal S$ of the charge carriers. We discuss corrections to this mean-field formula and use results obtained for the periodic Anderson and the Falicov-Kimball models to explain the concentration (chemical pressure) and temperature dependence of $alpha/gamma T$ in EuCu$_2$(Ge$_{1-x}$Si$_x$)$_2$, CePt$_{1-x}$Ni$_x$, and YbIn$_{1-x}$Ag${_x}$Cu$_4$ intermetallic compounds. % We also show, using the poor mans mapping which approximates the periodic Anderson lattice by the single impurity Anderson model, that the seemingly complicated behavior of $alpha(T)$ can be explained in simple terms and that the temperature dependence of $alpha(T)$ at each doping level is consistent with the magnetic character of 4{it f} ions.