Do you want to publish a course? Click here

Nightside condensation of iron in an ultra-hot giant exoplanet

112   0   0.0 ( 0 )
 Added by David Ehrenreich
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultra-hot giant exoplanets receive thousands of times Earths insolation. Their high-temperature atmospheres (>2,000 K) are ideal laboratories for studying extreme planetary climates and chemistry. Daysides are predicted to be cloud-free, dominated by atomic species and substantially hotter than nightsides. Atoms are expected to recombine into molecules over the nightside, resulting in different day-night chemistry. While metallic elements and a large temperature contrast have been observed, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night (evening) and night-to-day (morning) terminators could, however, be revealed as an asymmetric absorption signature during transit. Here, we report the detection of an asymmetric atmospheric signature in the ultra-hot exoplanet WASP-76b. We spectrally and temporally resolve this signature thanks to the combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by -11+/-0.7 km s-1 on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. Iron must thus condense during its journey across the nightside.

rate research

Read More

About one out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultra-short-period planet (Sanchis-ojeda et al. 2014; Winn et al. 2018). All of the previously known ultra-short-period planets are either hot Jupiters, with sizes above 10 Earth radii (Re), or apparently rocky planets smaller than 2 Re. Such lack of planets of intermediate size (the hot Neptune desert) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here, we report the discovery of an ultra-short-period planet with a radius of 4.6 Re and a mass of 29 Me, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite (Ricker et al. 2015) revealed transits of the bright Sun-like star starname, every 0.79 days. The planets mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(-2.9)% of the total mass. With an equilibrium temperature around 2000 K, it is unclear how this ultra-hot Neptune managed to retain such an envelope. Follow-up observations of the planets atmosphere to better understand its origin and physical nature will be facilitated by the stars brightness (Vmag=9.8).
Ultra-hot Jupiters offer interesting prospects for expanding our theories on dynamical evolution and the properties of extremely irradiated atmospheres. In this context, we present the analysis of new optical spectroscopy for the transiting ultra-hot Jupiter WASP-121b. We first refine the orbital properties of WASP-121b, which is on a nearly polar (obliquity $psi^{rm North}$=88.1$pm$0.25$^{circ}$ or $psi^{rm South}$=91.11$pm$0.20$^{circ}$) orbit, and exclude a high differential rotation for its fast-rotating (P$<$1.13 days), highly inclined ($i_mathrm{star}^{rm North}$=8.1$stackrel{+3.0}{_{-2.6}}^{circ}$ or $i_mathrm{star}^{rm South}$=171.9$stackrel{+2.5}{_{-3.4}}^{circ}$) star. We then present a new method that exploits the reloaded Rossiter-McLaughlin technique to separate the contribution of the planetary atmosphere and of the spectrum of the stellar surface along the transit chord. Its application to HARPS transit spectroscopy of WASP-121b reveals the absorption signature from metals, likely atomic iron, in the planet atmospheric limb. The width of the signal (14.3$pm$1.2 km/s) can be explained by the rotation of the tidally locked planet. Its blueshift (-5.2$pm$0.5 km/s) could trace strong winds from the dayside to the nightside, or the anisotropic expansion of the planetary thermosphere.
We present a primary transit observation for the ultra hot (Teq~2400K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12-1.64 micron wavelength range. The 1.4 micron water absorption band is detected at high confidence (5.4 sigma) in the planetary atmosphere. We also reanalyze ground-based photometric lightcurves taken in the B, r, and z filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference, and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12-1.3 micron wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs, and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.
We present sixteen occultation and three transit light curves for the ultra-short period hot Jupiter WASP-103 b, in addition to five new radial velocity measurements. We combine these observations with archival data and perform a global analysis of the resulting extensive dataset, accounting for the contamination from a nearby star. We detect the thermal emission of the planet in both the $z$ and $K_{mathrm{S}}$-bands, the measured occultation depths being 699$pm$110 ppm (6.4-$sigma$) and $3567_{-350}^{+400}$ ppm (10.2-$sigma$), respectively. We use these two measurements together with recently published HST/WFC3 data to derive joint constraints on the properties of WASP-103 bs dayside atmosphere. On one hand, we find that the $z$-band and WFC3 data are best fit by an isothermal atmosphere at 2900 K or an atmosphere with a low H$_2$O abundance. On the other hand, we find an unexpected excess in the $K_{mathrm{S}}$-band measured flux compared to these models, which requires confirmation with additional observations before any interpretation can be given. From our global data analysis, we also derive a broad-band optical transmission spectrum that shows a minimum around 700 nm and increasing values towards both shorter and longer wavelengths. This is in agreement with a previous study based on a large fraction of the archival transit light curves used in our analysis. The unusual profile of this transmission spectrum is poorly matched by theoretical spectra and is not confirmed by more recent observations at higher spectral resolution. Additional data, both in emission and transmission, are required to better constrain the atmospheric properties of WASP-103 b.
There has been increasing progress toward detailed characterization of exoplanetary atmospheres, in both observations and theoretical methods. Improvements in observational facilities and data reduction and analysis techniques are enabling increasingly higher quality spectra, especially from ground-based facilities. The high data quality also necessitates concomitant improvements in models required to interpret such data. In particular, the detection of trace species such as metal oxides has been challenging. Extremely irradiated exoplanets (~3000 K) are expected to show oxides with strong absorption signals in the optical. However, there are only a few hot Jupiters where such signatures have been reported. Here we aim to characterize the atmosphere of the ultra-hot Jupiter WASP-33b using two primary transits taken 18 orbits apart. Our atmospheric retrieval, performed on the combined data sets, provides initial constraints on the atmospheric composition of WASP-33b. We report a possible indication of aluminum oxide (AlO) at 3.3-sigma significance. The data were obtained with the long slit OSIRIS spectrograph mounted at the 10-meter Gran Telescopio Canarias. We cleaned the brightness variations from the light curves produced by stellar pulsations, and we determined the wavelength-dependent variability of the planetary radius caused by the atmospheric absorption of stellar light. A simultaneous fit to the two transit light curves allowed us to refine the transit parameters, and the common wavelength coverage between the two transits served to contrast our results. Future observations with HST as well as other large ground-based facilities will be able to further constrain the atmospheric chemical composition of the planet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا