Do you want to publish a course? Click here

An all-photonic focal-plane wavefront sensor

82   0   0.0 ( 0 )
 Added by Barnaby Norris
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Adaptive optics (AO) is critical in astronomy, optical communications and remote sensing to deal with the rapid blurring caused by the Earths turbulent atmosphere. But current AO systems are limited by their wavefront sensors, which need to be in an optical plane non-common to the science image and are insensitive to certain wavefront-error modes. Here we present a wavefront sensor based on a photonic lantern fibre-mode-converter and deep learning, which can be placed at the same focal plane as the science image, and is optimal for single-mode fibre injection. By measuring the intensities of an array of single-mode outputs, both phase and amplitude information on the incident wavefront can be reconstructed. We demonstrate the concept with simulations and an experimental realisation wherein Zernike wavefront errors are recovered from focal-plane measurements to a precision of $5.1times10^{-3};pi$ radians root-mean-squared-error.



rate research

Read More

High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation and high flux ratio. Recently, optimized instruments like SPHERE and GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (~1au) but, because of uncalibrated aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>1e7). This requires a focal plane wavefront sensor. Our team proposed the SCC, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. First, we recall the principle of the SCC and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. We demonstrate in the laboratory that the MRSCC camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm. We reach a performance that is close to the chromatic limitations of our bench: contrast of 4.5e-8 between 5 and 17 lambda/D. The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the speckle intensity so as to detect and spectrally characterize faint old or light gaseous planets.
Focal plane wavefront sensing is an elegant solution for wavefront sensing since near-focal images of any source taken by a detector show distortions in the presence of aberrations. Non-Common Path Aberrations and the Low Wind Effect both have the ability to limit the achievable contrast of the finest coronagraphs coupled with the best extreme adaptive optics systems. To correct for these aberrations, the Subaru Coronagraphic Extreme Adaptive Optics instrument hosts many focal plane wavefront sensors using detectors as close to the science detector as possible. We present seven of them and compare their implementation and efficiency on SCExAO. This work will be critical for wavefront sensing on next generation of extremely large telescopes that might present similar limitations.
With its high sensitivity, the Pyramid wavefront sensor (PyWFS) is becoming an advantageous sensor for astronomical adaptive optics (AO) systems. However, this sensor exhibits significant non-linear behaviours leading to challenging AO control issues. In order to mitigate these effects, we propose to use, in addition to the classical pyramid sensor, a focal plane image combined with a convolutive description of the sensor to perform a fast tracking of the PyWFS non-linearities, the so-called optical gains (OG). We show that this additional focal plane imaging path only requires a small fraction of the total flux, while representing a robust solution to estimate the PyWFS OG. Finally, we demonstrate the gain brought by our method with the specific examples of bootstrap and Non-Common Path Aberrations (NCPA) handling.
In this article we show that the vector-Apodizing Phase Plate (vAPP) coronagraph can be designed such that the coronagraphic point spread functions (PSFs) can act as a wavefront sensor to measure and correct the (quasi-)static aberrations, without dedicated wavefront sensing holograms nor modulation by the deformable mirror. The absolute wavefront retrieval is performed with a non-linear algorithm. The focal-plane wavefront sensing (FPWFS) performance of the vAPP and the algorithm are evaluated with numerical simulations, to test various photon and read noise levels, the sensitivity to the 100 lowest Zernike modes and the maximum wavefront error (WFE) that can be accurately estimated in one iteration. We apply these methods to the vAPP within SCExAO, first with the internal source and subsequently on-sky. In idealised simulations we show that for $10^7$ photons the root-mean-square (RMS) WFE can be reduced to $simlambda/1000$, which is 1 nm RMS in the context of the SCExAO system. We find that the maximum WFE that can be corrected in one iteration is $simlambda/8$ RMS or $sim$200 nm RMS (SCExAO). Furthermore, we demonstrate the SCExAO vAPP capabilities by measuring and controlling the lowest 30 Zernike modes with the internal source and on-sky. On-sky, we report a raw contrast improvement of a factor $sim$2 between 2 and 4 $lambda/D$ after 5 iterations of closed-loop correction. When artificially introducing 150 nm RMS WFE, the algorithm corrects it within 5 iterations of closed-loop operation. FPWFS with the vAPPs coronagraphic PSFs is a powerful technique since it integrates coronagraphy and wavefront sensing, eliminating the need for additional probes and thus resulting in a $100%$ science duty cycle and maximum throughput for the target.
Fewer than 1% of all exoplanets detected to date have been characterized on the basis of spectroscopic observations of their atmosphere. Unlike indirect methods, high-contrast imaging offers access to atmospheric signatures by separating the light of a faint off-axis source from that of its parent star. Forthcoming space facilities, such as WFIRST/LUVOIR/HabEX, are expected to use coronagraphic instruments capable of imaging and spectroscopy in order to understand the physical properties of remote worlds. The primary technological challenge that drives the design of these instruments involves the precision control of wavefront phase and amplitude errors. Several FPWS and control techniques have been proposed and demonstrated in laboratory to achieve the required accuracy. However, these techniques have never been tested and compared under the same laboratory conditions. This paper compares two of these techniques in a closed loop in visible light: the pair-wise (PW) associated with electric field conjugation (EFC) and self-coherent camera (SCC). We first ran numerical simulations to optimize PW wavefront sensing and to predict the performance of a coronagraphic instrument with PW associated to EFC wavefront control, assuming modeling errors for both PW and EFC. Then we implemented the techniques on a laboratory testbed. We introduced known aberrations into the system and compared the wavefront sensing using both PW and SCC. The speckle intensity in the coronagraphic image was then minimized using PW+EFC and SCC independently. We demonstrate that both SCC and PW+EFC can generate a dark hole in space-like conditions in a few iterations. Both techniques reach the current limitation of our laboratory bench and provide coronagraphic contrast levels of 5e-9 in a narrow spectral band (<0.25% bandwidth)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا