No Arabic abstract
Cloud cavitation causes nontrivial energy concentration and acoustic shielding in liquid, and its control is a long-standing challenge due to complex dynamics of bubble clouds. We present a new framework to study closed-loop control of cavitation through acoustic feedback. While previous approaches used empirical thresholding, we employ model-based state estimation of coherent bubble dynamics based on theory and high-performance computing. Using a pulsed ultrasound setup, we demonstrate set-point control of the pulse repetition frequency (PRF) to modulate acoustic cavitation near a solid target over $O(100)$ s. We identify a quasi-equilibrium correlation between PRF and the bubble dynamics, and an optimal PRF to minimize acoustic shielding of the target. This framework can be readily scaled up by enhanced acoustic sensing and computational power.
The cavitation-driven expansion dynamics of liquid tin microdroplets is investigated, set in motion by the ablative impact of a 15-ps laser pulse. We combine high-resolution stroboscopic shadowgraphy with an intuitive fluid dynamic model that includes the onset of fragmentation, and find good agreement between model and experimental data for two different droplet sizes over a wide range of laser pulse energies. The dependence of the initial expansion velocity on these experimental parameters is heuristically captured in a single power law. Further, the obtained late-time mass distributions are shown to be governed by a single parameter. These studies are performed under conditions relevant for plasma light sources for extreme-ultraviolet nanolithography.
Microscopic vapor explosions or cavitation bubbles can be generated periodically in an optical tweezer with a microparticle that partially absorbs at the trapping laser wavelength. In this work we measure the size distribution and the production rate of cavitation bubbles for microparticles with a diameter of 3 $mu$m using high speed video recording and a fast photodiode. We find that there is a lower bound for the maximum bubble radius $R_{max}sim 2~mu$m which can be explained in terms of the microparticle size. More than $94 %$ of the measured $R_{max}$ are in the range between 2 and 6 $mu$m, while the same percentage of the measured individual frequencies $f_i$ or production rates are between 10 and 200 Hz. The photodiode signal yields an upper bound for the lifetime of the bubbles, which is at most twice the value predicted by the Rayleigh equation. We also report empirical relations between $R_{max}$, $f_i$ and the bubble lifetimes.
Highly turbulent Taylor-Couette flow with spanwise-varying roughness is investigated experimentally and numerically (direct numerical simulations (DNS) with an immersed boundary method (IBM)) to determine the effects of the spacing and axial width $s$ of the spanwise varying roughness on the total drag and {on} the flow structures. We apply sandgrain roughness, in the form of alternating {rough and smooth} bands to the inner cylinder. Numerically, the Taylor number is $mathcal{O}(10^9)$ and the roughness width is varied between $0.47leq tilde{s}=s/d leq 1.23$, where $d$ is the gap width. Experimentally, we explore $text{Ta}=mathcal{O}(10^{12})$ and $0.61leq tilde s leq 3.74$. For both approaches the radius ratio is fixed at $eta=r_i/r_o = 0.716$, with $r_i$ and $r_o$ the radius of the inner and outer cylinder respectively. We present how the global transport properties and the local flow structures depend on the boundary conditions set by the roughness spacing $tilde{s}$. Both numerically and experimentally, we find a maximum in the angular momentum transport as function of $tilde s$. This can be atributed to the re-arrangement of the large-scale structures triggered by the presence of the rough stripes, leading to correspondingly large-scale turbulent vortices.
The dynamics of bubble clouds induced by high-intensity focused ultrasound are investigated in a regime where the cloud size is similar to the ultrasound wavelength. High-speed images show that the cloud is asymmetrical; the bubbles nearest the source grow to a larger radius than the distal ones. Similar structures of bubble clouds are observed in numerical simulations that mimic the laboratory experiment. To elucidate the structure, a parametric study is conducted for plane ultrasound waves with various amplitudes and diffuse clouds with different initial void fractions. Based on an analysis of the kinetic energy of liquid induced by bubble oscillations, a new scaling parameter is introduced to characterize the dynamics. The new parameter generalizes the cloud interaction parameter originally introduced by dAgostino and Brennen (1989). The dynamic interaction parameter controls the energy localization and consequent anisoptropy of the cloud. Moreover, the amplitude of the far-field, bubble-scattered acoustics is likewise correlated with the proposed parameter. Findings of the present study not only shed light on the physics of cloud cavitation, but may also be of use to quantification of the effects of cavitation on outcomes of ultrasound therapies including HIFU-based lithotripsy.
Hard particle erosion and cavitation damage are two main wear problems that can affect the internal components of hydraulic machinery such as hydraulic turbines or pumps. If both problems synergistically act together, the damage can be more severe and result in high maintenance costs. In this work, a study of the interaction of hard particles and cavitation bubbles is developed to understand their interactive behavior. Experimental tests and numerical simulations using computational fluid dynamics (CFD) were performed. Experimentally, a cavitation bubble was generated with an electric spark near a solid surface, and its interaction with hard particles of different sizes and materials was observed using a high-speed camera. A simplified analytical approach was developed to model the behavior of the particles near the bubble interface during its collapse. Computationally, we simulated an air bubble that grew and collapsed near a solid wall while interacting with one particle near the bubble interface. Several simulations with different conditions were made and validated with the experimental data. The experimental data obtained from particles above the bubble were consistent with the numerical results and analytical study. The particle size, density and position of the particle with respect to the bubble interface strongly affected the maximum velocity of the particles.