No Arabic abstract
In order to compute fast approximations to the singular value decompositions (SVD) of very large matrices, randomized sketching algorithms have become a leading approach. However, a key practical difficulty of sketching an SVD is that the user does not know how far the sketched singular vectors/values are from the exact ones. Indeed, the user may be forced to rely on analytical worst-case error bounds, which do not account for the unique structure of a given problem. As a result, the lack of tools for error estimation often leads to much more computation than is really necessary. To overcome these challenges, this paper develops a fully data-driven bootstrap method that numerically estimates the actual error of sketched singular vectors/values. In particular, this allows the user to inspect the quality of a rough initial sketched SVD, and then adaptively predict how much extra work is needed to reach a given error tolerance. Furthermore, the method is computationally inexpensive, because it operates only on sketched objects, and it requires no passes over the full matrix being factored. Lastly, the method is supported by theoretical guarantees and a very encouraging set of experimental results.
Singular value decomposition (SVD) is one of the most fundamental tools in machine learning and statistics.The modern machine learning community usually assumes that data come from and belong to small-scale device users. The low communication and computation power of such devices, and the possible privacy breaches of users sensitive data make the computation of SVD challenging. Federated learning (FL) is a paradigm enabling a large number of devices to jointly learn a model in a communication-efficient way without data sharing. In the FL framework, we develop a class of algorithms called FedPower for the computation of partial SVD in the modern setting. Based on the well-known power method, the local devices alternate between multiple local power iterations and one global aggregation to improve communication efficiency. In the aggregation, we propose to weight each local eigenvector matrix with Orthogonal Procrustes Transformation (OPT). Considering the practical stragglers effect, the aggregation can be fully participated or partially participated, where for the latter we propose two sampling and aggregation schemes. Further, to ensure strong privacy protection, we add Gaussian noise whenever the communication happens by adopting the notion of differential privacy (DP). We theoretically show the convergence bound for FedPower. The resulting bound is interpretable with each part corresponding to the effect of Gaussian noise, parallelization, and random sampling of devices, respectively. We also conduct experiments to demonstrate the merits of FedPower. In particular, the local iterations not only improve communication efficiency but also reduce the chance of privacy breaches.
Machine learning models have traditionally been developed under the assumption that the training and test distributions match exactly. However, recent success in few-shot learning and related problems are encouraging signs that these models can be adapted to more realistic settings where train and test distributions differ. Unfortunately, there is severely limited theoretical support for these algorithms and little is known about the difficulty of these problems. In this work, we provide novel information-theoretic lower-bounds on minimax rates of convergence for algorithms that are trained on data from multiple sources and tested on novel data. Our bounds depend intuitively on the information shared between sources of data, and characterize the difficulty of learning in this setting for arbitrary algorithms. We demonstrate these bounds on a hierarchical Bayesian model of meta-learning, computing both upper and lower bounds on parameter estimation via maximum-a-posteriori inference.
We propose a new method for modeling the distribution function of high dimensional extreme value distributions. The Pickands dependence function models the relationship between the covariates in the tails, and we learn this function using a neural network that is designed to satisfy its required properties. Moreover, we present new methods for recovering the spectral representation of extreme distributions and propose a generative model for sampling from extreme copulas. Numerical examples are provided demonstrating the efficacy and promise of our proposed methods.
The fastICA method is a popular dimension reduction technique used to reveal patterns in data. Here we show both theoretically and in practice that the approximations used in fastICA can result in patterns not being successfully recognised. We demonstrate this problem using a two-dimensional example where a clear structure is immediately visible to the naked eye, but where the projection chosen by fastICA fails to reveal this structure. This implies that care is needed when applying fastICA. We discuss how the problem arises and how it is intrinsically connected to the approximations that form the basis of the computational efficiency of fastICA.
Modern large-scale statistical models require to estimate thousands to millions of parameters. This is often accomplished by iterative algorithms such as gradient descent, projected gradient descent or their accelerat