Do you want to publish a course? Click here

Hierarchical Human Parsing with Typed Part-Relation Reasoning

99   0   0.0 ( 0 )
 Added by Wenguan Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Human parsing is for pixel-wise human semantic understanding. As human bodies are underlying hierarchically structured, how to model human structures is the central theme in this task. Focusing on this, we seek to simultaneously exploit the representational capacity of deep graph networks and the hierarchical human structures. In particular, we provide following two contributions. First, three kinds of part relations, i.e., decomposition, composition, and dependency, are, for the first time, completely and precisely described by three distinct relation networks. This is in stark contrast to previous parsers, which only focus on a portion of the relations and adopt a type-agnostic relation modeling strategy. More expressive relation information can be captured by explicitly imposing the parameters in the relation networks to satisfy the specific characteristics of different relations. Second, previous parsers largely ignore the need for an approximation algorithm over the loopy human hierarchy, while we instead address an iterative reasoning process, by assimilating generic message-passing networks with their edge-typed, convolutional counterparts. With these efforts, our parser lays the foundation for more sophisticated and flexible human relation patterns of reasoning. Comprehensive experiments on five datasets demonstrate that our parser sets a new state-of-the-art on each.



rate research

Read More

This paper addresses the problem of geometric scene parsing, i.e. simultaneously labeling geometric surfaces (e.g. sky, ground and vertical plane) and determining the interaction relations (e.g. layering, supporting, siding and affinity) between main regions. This problem is more challenging than the traditional semantic scene labeling, as recovering geometric structures necessarily requires the rich and diverse contextual information. To achieve these goals, we propose a novel recurrent neural network model, named Hierarchical Long Short-Term Memory (H-LSTM). It contains two coupled sub-networks: the Pixel LSTM (P-LSTM) and the Multi-scale Super-pixel LSTM (MS-LSTM) for handling the surface labeling and relation prediction, respectively. The two sub-networks provide complementary information to each other to exploit hierarchical scene contexts, and they are jointly optimized for boosting the performance. Our extensive experiments show that our model is capable of parsing scene geometric structures and outperforming several state-of-the-art methods by large margins. In addition, we show promising 3D reconstruction results from the still images based on the geometric parsing.
Human body part parsing, or human semantic part segmentation, is fundamental to many computer vision tasks. In conventional semantic segmentation methods, the ground truth segmentations are provided, and fully convolutional networks (FCN) are trained in an end-to-end scheme. Although these methods have demonstrated impressive results, their performance highly depends on the quantity and quality of training data. In this paper, we present a novel method to generate synthetic human part segmentation data using easily-obtained human keypoint annotations. Our key idea is to exploit the anatomical similarity among human to transfer the parsing results of a person to another person with similar pose. Using these estimated results as additional training data, our semi-supervised model outperforms its strong-supervised counterpart by 6 mIOU on the PASCAL-Person-Part dataset, and we achieve state-of-the-art human parsing results. Our approach is general and can be readily extended to other object/animal parsing task assuming that their anatomical similarity can be annotated by keypoints. The proposed model and accompanying source code are available at https://github.com/MVIG-SJTU/WSHP
In this paper, we solve the sample shortage problem in the human parsing task. We begin with the self-learning strategy, which generates pseudo-labels for unlabeled data to retrain the model. However, directly using noisy pseudo-labels will cause error amplification and accumulation. Considering the topology structure of human body, we propose a trainable graph reasoning method that establishes internal structural connections between graph nodes to correct two typical errors in the pseudo-labels, i.e., the global structural error and the local consistency error. For the global error, we first transform category-wise features into a high-level graph model with coarse-grained structural information, and then decouple the high-level graph to reconstruct the category features. The reconstructed features have a stronger ability to represent the topology structure of the human body. Enlarging the receptive field of features can effectively reducing the local error. We first project feature pixels into a local graph model to capture pixel-wise relations in a hierarchical graph manner, then reverse the relation information back to the pixels. With the global structural and local consistency modules, these errors are rectified and confident pseudo-labels are generated for retraining. Extensive experiments on the LIP and the ATR datasets demonstrate the effectiveness of our global and local rectification modules. Our method outperforms other state-of-the-art methods in supervised human parsing tasks.
143 - Lu Yang , Qing Song , Zhihui Wang 2020
Multiple human parsing aims to segment various human parts and associate each part with the corresponding instance simultaneously. This is a very challenging task due to the diverse human appearance, semantic ambiguity of different body parts, and complex background. Through analysis of multiple human parsing task, we observe that human-centric global perception and accurate instance-level parsing scoring are crucial for obtaining high-quality results. But the most state-of-the-art methods have not paid enough attention to these issues. To reverse this phenomenon, we present Renovating Parsing R-CNN (RP R-CNN), which introduces a global semantic enhanced feature pyramid network and a parsing re-scoring network into the existing high-performance pipeline. The proposed RP R-CNN adopts global semantic representation to enhance multi-scale features for generating human parsing maps, and regresses a confidence score to represent its quality. Extensive experiments show that RP R-CNN performs favorably against state-of-the-art methods on CIHP and MHP-v2 datasets. Code and models are available at https://github.com/soeaver/RP-R-CNN.
Reasoning about images/objects and their hierarchical interactions is a key concept for the next generation of computer vision approaches. Here we present a new framework to deal with it through a visual hierarchical context-based reasoning. Current reasoning methods use the fine-grained labels from images objects and their interactions to predict labels to new objects. Our framework modifies this current information flow. It goes beyond and is independent of the fine-grained labels from the objects to define the image context. It takes into account the hierarchical interactions between different abstraction levels (i.e. taxonomy) of information in the images and their bounding-boxes. Besides these connections, it considers their intrinsic characteristics. To do so, we build and apply graphs to graph convolution networks with convolutional neural networks. We show a strong effectiveness over widely used convolutional neural networks, reaching a gain 3 times greater on well-known image datasets. We evaluate the capability and the behavior of our framework under different scenarios, considering distinct (superclass, subclass and hierarchical) granularity levels. We also explore attention mechanisms through graph attention networks and pre-processing methods considering dimensionality expansion and/or reduction of the features representations. Further analyses are performed comparing supervised and semi-supervised approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا