No Arabic abstract
We study stationary solutions in the differential kinetic equation, which was introduced in for description of a local dual cascade wave turbulence. We give a full classification of single-cascade states in which there is a finite flux of only one conserved quantity. Analysis of the steady-state spectrum is based on a phase-space analysis of orbits of the underlying dynamical system. The orbits of the dynamical system demonstrate the blow-up behaviour which corresponds to a sharp front where the spectrum vanishes at a finite wave number. The roles of the KZ and thermodynamic scaling as intermediate asymptotic, as well as of singular solutions, are discussed.
We report on the observation of surface gravity wave turbulence at scales larger than the forcing ones in a large basin. In addition to the downscale transfer usually reported in gravity wave turbulence, an upscale transfer is observed, interpreted as the inverse cascade of weak turbulence theory. A steady state is achieved when the inverse cascade reaches a scale in between the forcing wavelength and the basin size, but far from the latter. This inverse cascade saturation, which depends on the wave steepness, is probably due to the emergence of nonlinear dissipative structures such as sharp-crested waves.
We investigate experimentally turbulence of surface gravity waves in the Coriolis facility in Grenoble by using both high sensitivity local probes and a time and space resolved stereoscopic reconstruction of the water surface. We show that the water deformation is made of the superposition of weakly nonlinear waves following the linear dispersion relation and of bound waves resulting from non resonant triadic interaction. Although the theory predicts a 4-wave resonant coupling supporting the presence of an inverse cascade of wave action, we do not observe such inverse cascade. We investigate 4-wave coupling by computing the tricoherence i.e. 4-wave correlations. We observed very weak values of the tricoherence at the frequencies excited on the linear dispersion relation that are consistent with the hypothesis of weak coupling underlying the weak turbulence theory.
The conventional approach to the turbulent energy cascade, based on Richardson-Kolmogorov phenomenology, ignores the topology of emerging vortices, which is related to the helicity of the turbulent flow. It is generally believed that helicity can play a significant role in turbulent systems, e.g., supporting the generation of large-scale magnetic fields, but its impact on the energy cascade to small scales has never been observed. We suggest for the first time a generalized phenomenology for isotropic turbulence with an arbitrary spectral distribution of the helicity. We discuss various scenarios of direct turbulent cascades with new helicity effect, which can be interpreted as a hindering of the spectral energy transfer. Therefore the energy is accumulated and redistributed so that the efficiency of non-linear interactions will be sufficient to provide a constant energy flux. We confirm our phenomenology by high Reynolds number numerical simulations based on a shell model of helical turbulence. The energy in our model is injected at a certain large scale only, whereas the source of helicity is distributed over all scales. In particular, we found that the helical bottleneck effect can appear in the inertial interval of the energy spectrum.
Helicity, as one of only two inviscid invariants in three-dimensional turbulence, plays an important role in the generation and evolution of turbulence. From the traditional viewpoint, there exists only one channel of helicity cascade similar to that of kinetic energy cascade. Through theoretical analysis, we find that there are two channels in helicity cascade process. The first channel mainly originates from vortex twisting process, and the second channel mainly originates from vortex stretching process. By analysing the data of direct numerical simulations of typical turbulent flows, we find that these two channels behave differently. The ensemble averages of helicity flux in different channels are equal in homogeneous and isotropic turbulence, while they are different in other type of turbulent flows. The second channel is more intermittent and acts more like a scalar, especially on small scales. Besides, we find a novel mechanism of hindered even inverse energy cascade, which could be attributed to the second-channel helicity flux with large amplitude.
We solve the Navier-Stokes equations with two simultaneous forcings. One forcing is applied at a given large-scale and it injects energy. The other forcing is applied at all scales belonging to the inertial range and it injects helicity. In this way we can vary the degree of turbulence helicity from non helical to maximally helical. We find that increasing the rate of helicity injection does not change the energy flux. On the other hand the level of total energy is strongly increased and the energy spectrum gets steeper. The energy spectrum spans from a Kolmogorov scaling law $k^{-5/3}$ for a non-helical turbulence, to a non-Kolmogorov scaling law $k^{-7/3}$ for a maximally helical turbulence. In the later case we find that the characteristic time of the turbulence is not the turnover time but a time based on the helicity injection rate. We also analyse the results in terms of helical modes decomposition. For a maximally helical turbulence one type of helical mode is found to be much more energetic than the other one, by several orders of magnitude. The energy cascade of the most energetic type of helical mode results from the sum of two fluxes. One flux is negative and can be understood in terms of a decimated model. This negative flux is however not sufficient to lead an inverse energy cascade. Indeed the other flux involving the least energetic type of helical mode is positive and the largest. The least energetic type of helical mode is then essential and cannot be neglected.