No Arabic abstract
Realization of topological superconductors (TSCs) hosting Majorana fermions is a central challenge in condensed-matter physics. One approach is to use the superconducting proximity effect (SPE) in heterostructures, where a topological insulator contacted with a superconductor hosts an effective p-wave pairing by the penetration of Cooper pairs across the interface. However, this approach suffers a difficulty in accessing the topological interface buried deep beneath the surface. Here, we propose an alternative approach to realize topological superconductivity without SPE. In a Pb(111) thin film grown on TlBiSe2, we discover that the Dirac-cone state of substrate TlBiSe2 migrates to the top surface of Pb film and obtains an energy gap below the superconducting transition temperature of Pb. This suggests that a BCS superconductor is converted into a TSC by the topological proximity effect. Our discovery opens a route to manipulate topological superconducting properties of materials.
We present microscopic, self-consistent calculations of the superconducting order parameter and pairing correlations near the interface of an $s$-wave superconductor and a three-dimensional topological insulator with spin-orbit coupling. We discuss the suppression of the order parameter by the topological insulator and show that the equal-time pair correlation functions in the triplet channel, induced by spin-flip scattering at the interface, are of $p_xpm i p_y$ symmetry. We verify that the spectrum at sub-gap energies is well described by the Fu-Kane model. The sub-gap modes are viewed as interface states with spectral weight penetrating well into the superconductor. We extract the phenomenological parameters of the Fu-Kane model from microscopic calculations, and find they are strongly renormalized from the bulk material parameters. This is consistent with previous results of Stanescu et al for a lattice model using perturbation theory in the tunneling limit.
In superconductors, the condensation of Cooper pairs gives rise to fluxoid quantization in discrete units of $Phi_0 = hc / 2e$. The denominator of $2e$ is the signature of electron pairing, which is evidenced by a number of macroscopic quantum phenomena, such as the Little-Parks effect and the Josephson effect, where the critical temperature or the critical current oscillates in the period of $Phi_0$. Here we report the observation of fractional Little-Parks effect in mesoscopic rings of epitaxial $beta$-Bi$_2$Pd, a topological superconductor. Besides $Phi_0$, novel Little-Parks oscillation periodicities of $2Phi_0$, $3Phi_0$ and $4Phi_0$ are also observed, implying quasiparticles with effective charges being a fraction of a Cooper pair. We show that the fractional Little-Parks effect may be closely related to the fractional Josephson effect, which is a key signature of chiral Majorana edge states.
Superconductor-topological insulator (SC-TI) heterostructures were proposed to be a possible platform to realize and control Majorana zero-modes. Despite experimental signatures indicating their existence, univocal interpretation of the observed features demands theories including realistic electronic structures. To achieve this, we solve the Kohn-Sham-Dirac-Bogoliubov-de Gennes equations for ultrathin Bi$_2$Se$_3$ films on superconductor PdTe, within the fully relativistic Korringa-Kohn-Rostoker method, and investigate quasiparticle spectra as a function of chemical potential and film thickness. We find a strongly momentum-dependent proximity-induced gap feature where the gap sizes highly depend on characteristics of the TI states. The interface TI Dirac state is relevant to the induced gap only when the chemical potential is close to the Dirac-point energy. Otherwise, at a given chemical potential, the largest induced gap arises from the highest-energy quantum-well states, whereas the smallest gap arises from the TI topological surface state with its gap size depending on the TI pairing potential.
Proximity-induced superconductivity in a 3D topological insulator represents a new avenue for observing zero-energy Majorana fermions inside vortex cores. Relatively small gaps and low transition temperatures of conventional s-wave superconductors put the hard constraints on these experiments. Significantly larger gaps and higher transition temperatures in cuprate superconductors might be an attractive alternative to considerably relax these constraints, but it is not clear whether the proximity effect would be effective in heterostructures involving cuprates and topological insulators. Here, we present angle-resolved photoemission studies of thin Bi2Se3 films grown in-situ on optimally doped Bi2Sr2CaCu2O8 substrates that show the absence of proximity-induced gaps on the surfaces of Bi2Se3 films as thin as a 1.5 quintuple layer. These results suggest that the superconducting proximity effect between a cuprate superconductor and a topological insulator is strongly suppressed, likely due to a very short coherence length along the c-axis, incompatible crystal and pairing symmetries at the interface, small size of the topological surface state Fermi surface and adverse effects of a strong spin-orbit coupling in the topological material.
In this work, we investigate the thermoelectric properties of a hybrid junction realised coupling surface states of a three-dimensional topological insulator with a conventional $s$-wave superconductor. We focus on the ballistic devices and study the quasiparticle flow, carrying both electric and thermal currents, adopting a scattering matrix approach based on conventional Blonder-Tinkham-Klapwijk formalism. We calculate the cooling efficiency of the junction as a function of the microscopic parameters of the normal region (i.e. the chemical potential etc.). The cooling power increases when moving from a regime of Andreev specular-reflection to a regime where Andreev retro-reflection dominates. Differently from the case of a conventional N/S interface, we can achieve efficient cooling of the normal region, without including any explicit impurity scattering at the interface, to increase normal reflection.