No Arabic abstract
We investigate scaling rules for the ionization cross sections of multicharged ions on molecules of biological interest. The cross sections are obtained using a methodology presented in [Mendez et al. J. Phys B (2020)], which considers distorted-wave calculations for atomic targets combined with a molecular stoichiometric model. We examine ions with nuclear charges Z from +1 to +8 impacting on five nucleobases -adenine, cytosine, guanine, thymine, uracil-, tetrahydrofuran, pyrimidine, and water. We investigate scaling rules of the ionization cross section with the ion charge and the number of active electrons per molecule. Combining these two features, we define a scaling law for any ion and molecular target, which is valid in the intermediate to high energy range, i.e., 0.2-5 MeV/amu for oxygen impact. Thus, the forty ion-molecule systems analyzed here can be merged into a single band. We confirm the generality of our independent scaling law with several collisional systems.
In the present work, we investigate the ionization of molecules of biological interest by the impact of multicharged ions in the intermediate to high energy range. We performed full non-perturbative distorted-wave calculations (CDW) for thirty-six collisional systems composed by six atomic targets: H, C, N, O, F, and S -which are the constituents of most of the DNA and biological molecules- and six charged projectiles (antiprotons, H, He, B, C, and O). On account of the radiation damage caused by secondary electrons, we inspect the energy and angular distributions of the emitted electrons from the atomic targets. We examine seventeen molecules: DNA and RNA bases, DNA backbone, pyrimidines, tetrahydrofuran (THF), and C n H n compounds. We show that the simple stoichiometric model (SSM), which approximates the molecular ionization cross sections as a linear combination of the atomic ones, gives reasonably good results for complex molecules. We also inspect the extensively used Toburen scaling of the total ionization cross sections of molecules with the number of weakly bound electrons. Based on the atomic CDW results, we propose new active electron numbers, which leads to a better universal scaling for all the targets and ions studied here in the intermediate to the high energy region. The new scaling describes well the available experimental data for proton impact, including small molecules. We perform full molecular calculations for five nucleobases and test a modified stoichiometric formula based on the Mulliken charge of the composite atoms. The difference introduced by the new stoichiometric formula is less than 3%, which indicates the reliability of the SSM to deal with this type of molecules. The results of the extensive ion-target examination included in the present study allow us to assert that the SSM and the CDW-based scaling will be useful tools in this area.
Acene molecules (anthracene, tetracene, pentacene) and fullerene (C$_{60}$) are embedded in He nanodroplets (He$_N$) and probed by EUV synchrotron radiation. When resonantly exciting the He nanodroplets, the embedded molecules M are efficiently ionized by the Penning reaction $mathrm{He}_N^*+mathrm{M}rightarrowmathrm{He}_N + mathrm{M}^+ + e^-$. However, the Penning electron spectra are broad and structureless -- showing no resemblance neither with those measured by binary Penning collisions, nor with those measured for dopants bound to the He droplet surface. The similarity of all four spectra indicates that electron spectra of embedded species are substantially altered by electron-He scattering. Simulations based on elastic binary electron-He collisions qualitatively reproduce the measured spectra, but require the assumption of unexpectedly large He droplets.
As opposed to purely molecular systems where electron dynamics proceed only through intramolecular processes, weakly bound complexes such as He droplets offer an environment where local excitations can interact with neighbouring embedded molecules leading to new intermolecular relaxation mechanisms. Here, we report on a new decay mechanism leading to the double ionization of alkali dimers attached to He droplets by intermolecular energy transfer. From the electron spectra, the process is similar to the well-known shake-off mechanism observed in double Auger decay and single-photon double ionization, however, in this case, the process is dominant, occurring with efficiencies equal to, or greater than, single ionization by energy transfer. Although an alkali dimer attached to a He droplet is a model case, the decay mechanism is relevant for any system where the excitation energy of one constituent exceeds the double ionization potential of another neighbouring molecule. The process is, in particular, relevant for biological systems, where radicals and slow electrons are known to cause radiation damage
We report on the production and study of stable, highly charged droplets of superfluid helium. Using a novel experimental setup we produce neutral beams of liquid helium nanodroplets containing millions of atoms or more that can be ionized by electron impact, mass-per-charge selected, and ionized a second time before being analyzed. Droplets containing up to 55 net positive charges are identified and the appearance sizes of multiply charge droplets are determined as a function of charge state. We show that the droplets are stable on the millisecond time scale of the experiment and decay through the loss of small charged clusters, not through symmetric Coulomb explosions.
We study frustrated double ionization in a strongly-driven heteronuclear molecule HeH$^{+}$ and compare with H$_2$. We compute the probability distribution of the sum of the final kinetic energies of the nuclei for strongly-driven HeH$^{+}$. We find that this distribution has more than one peak for strongly-driven HeH$^{+}$, a feature we do not find to be present for strongly-driven H$_{2}$. Moreover, we compute the probability distribution of the n quantum number of frustrated double ionization. We find that this distribution has several peaks for strongly-driven HeH$^{+}$, while the respective distribution has one main peak and a shoulder at lower n quantum numbers for strongly-driven H$_{2}$. Surprisingly, we find this feature to be a clear signature of the intertwined electron-nuclear motion.