Do you want to publish a course? Click here

Simulating JWST/NIRCam Color Selection of High-Redshift Galaxies

88   0   0.0 ( 0 )
 Added by Kevin Hainline
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The NIRCam instrument on the upcoming James Webb Space Telescope (JWST) will offer an unprecedented view of the most distant galaxies. In preparation for future deep NIRCam extragalactic surveys, it is crucial to understand the color selection of high-redshift galaxies using the Lyman dropout technique. To that end, we have used the JAdes extraGalactic Ultradeep Artificial Realizations (JAGUAR) mock catalog to simulate a series of extragalactic surveys with realistic noise estimates. This enables us to explore different color selections and their impact on the number density of recovered high-redshift galaxies and lower-redshift interlopers. We explore how survey depth, detection signal-to-noise ratio, color selection method, detection filter choice, and the presence of the Ly$alpha$ emission line affects the resulting dropout selected samples. We find that redder selection colors reduce the number of recovered high-redshift galaxies, but the overall accuracy of the final sample is higher. In addition, we find that methods that utilize two or three color cuts have higher accuracy because of their ability to select against low-redshift quiescent and faint dusty interloper galaxies. We also explore the near-IR colors of brown dwarfs and demonstrate that, while they are predicted to have low on-sky densities, they are most likely to be recovered in F090W dropout selection, but there are color cuts which help to mitigate this contamination. Overall, our results provide NIRCam selection methods to aid in the creation of large, pure samples of ultra high-redshift galaxies from photometry alone.



rate research

Read More

Recent observations have gathered a considerable sample of high redshift galaxy candidates and determined the evolution of their luminosity function (LF). To interpret these findings, we use cosmological SPH simulations including, in addition to standard physical processes, a detailed treatment of the Pop III-Pop II transition in early objects. The simulated high-z galaxies match remarkably well the amplitude and slope of the observed LF in the redshift range 5<z<10. The LF shifts towards fainter luminosities with increasing redshift, while its faint-end slope keeps an almost constant value, alpha ~-2. The stellar populations of high-z galaxies have ages of 100-300 (40-130) Myr at z=5 (z=7-8), implying an early (z>9.4) start of their star formation activity; the specific star formation rate is almost independent of galactic stellar mass. These objects are enriched rapidly with metals and galaxies identified by HST/WFC3 (M_UV < -18) show metallicities ~0.1 Zsun even at z=7-8. Most of the simulated galaxies at z~7 (noticeably the smallest ones) are virtually dust-free, and none of them has an extinction larger than E(B-V) = 0.01. The bulk (50%) of the ionizing photons is produced by objects populating the faint-end of the LF (M_UV < -16), which JWST will resolve up to z=7.3. PopIII stars continue to form essentially at all redshifts; however, at z=6 (z=10) the contribution of Pop III stars to the total galactic luminosity is always less than 5% for M_UV < -17 (M_UV < -16). The typical high-z galaxies closely resemble the GRB host galaxy population observed at lower redshifts, strongly encouraging the use of GRBs to detect the first galaxies.
We post-process galaxies in the IllustrisTNG simulations with SKIRT radiative transfer calculations to make predictions for the rest-frame near-infrared (NIR) and far-infrared (FIR) properties of galaxies at $zgeq 4$. The rest-frame $K$- and $z$-band galaxy luminosity functions from TNG are overall consistent with observations, despite a $sim 0.4,mathrm{dex}$ underprediction at $z=4$ for $M_{rm z}lesssim -24$. Predictions for the JWST MIRI observed galaxy luminosity functions and number counts are given. We show that the next-generation survey conducted by JWST can detect 500 (30) galaxies in F1000W in a survey area of $500,{rm arcmin}^{2}$ at $z=6$ ($z=8$). As opposed to the consistency in the UV, optical and NIR, we find that TNG, combined with our dust modelling choices, significantly underpredicts the abundance of most dust-obscured and thus most luminous FIR galaxies. As a result, the obscured cosmic star formation rate density (SFRD) and the SFRD contributed by optical/NIR dark objects are underpredicted. The discrepancies discovered here could provide new constraints on the sub-grid feedback models, or the dust contents, of simulations. Meanwhile, although the TNG predicted dust temperature and its relations with IR luminosity and redshift are qualitatively consistent with observations, the peak dust temperature of $zgeq 6$ galaxies are overestimated by about $20,{rm K}$. This could be related to the limited mass resolution of our simulations to fully resolve the porosity of the interstellar medium (or specifically its dust content) at these redshifts.
The bright emission from high-redshift quasars completely conceals their host galaxies in the rest-frame ultraviolet/optical, with detection of the hosts in these wavelengths eluding even the Hubble Space Telescope (HST) using detailed point spread function (PSF) modelling techniques. In this study we produce mock images of a sample of z=7 quasars extracted from the BlueTides simulation, and apply Markov Chain Monte Carlo-based PSF modelling to determine the detectability of their host galaxies with the James Webb Space Telescope (JWST). While no statistically significant detections are made with HST, we predict that at the same wavelengths and exposure times JWST NIRCam imaging will detect ~50% of quasar host galaxies. We investigate various observational strategies, and find that NIRCam wide-band imaging in the long-wavelength filters results in the highest fraction of successful quasar host detections, detecting >80% of the hosts of bright quasars in exposure times of 5 ks. Exposure times of ~5 ks are required to detect the majority of host galaxies in the NIRCam wide-band filters, however even 10 ks exposures with MIRI result in <30% successful host detections. We find no significant trends between galaxy properties and their detectability. The PSF modelling can accurately recover the host magnitudes, radii, and spatial distribution of the larger-scale emission, when accounting for the central core being contaminated by residual quasar flux. Care should be made when interpreting the host properties measured using PSF modelling.
JWST transmission and emission spectra will provide invaluable glimpses of transiting exoplanet atmospheres, including possible biosignatures. This promising science from JWST, however, will require exquisite precision and understanding of systematic errors that can impact the time series of planets crossing in front of and behind their host stars. Here, we provide estimates of the random noise sources affecting JWST NIRCam time-series data on the integration-to-integration level. We find that 1/f noise can limit the precision of grism time series for 2 groups (230 ppm to 1000 ppm depending on the extraction method and extraction parameters), but will average down like the square root of N frames/reads. The current NIRCam grism time series mode is especially affected by 1/f noise because its GRISMR dispersion direction is parallel to the detector fast-read direction, but could be alleviated in the GRISMC direction. Care should be taken to include as many frames as possible per visit to reduce this 1/f noise source: thus, we recommend the smallest detector subarray sizes one can tolerate, 4 output channels and readout modes that minimize the number of skipped frames (RAPID or BRIGHT2). We also describe a covariance weighting scheme that can significantly lower the contributions from 1/f noise as compared to sum extraction. We evaluate the noise introduced by pre-amplifier offsets, random telegraph noise, and high dark current RC pixels and find that these are correctable below 10 ppm once background subtraction and pixel masking are performed. We explore systematic error sources in a companion paper.
JWST holds great promise in characterizing atmospheres of transiting exoplanets, potentially providing insights into Earth-sized planets within the habitable zones of M dwarf host stars if photon-limited performance can be achieved. Here, we discuss the systematic error sources that are expected to be present in grism time series observations with the NIRCam instrument. We find that pointing jitter and high gain antenna moves on top of the detectors subpixel crosshatch patterns will produce relatively small variations (less than 6 parts per million, ppm). The time-dependent aperture losses due to thermal instabilities in the optics can also be kept to below 2 ppm. To achieve these low noise sources, it is important to employ a sufficiently large (more than 1.1 arcseconds) extraction aperture. Persistence due to charge trapping will have a minor (less than 3 ppm) effect on time series 20 minutes into an exposure and is expected to play a much smaller role than it does for the HST WFC3 detectors. We expect temperature fluctuations to be less than 3 ppm. In total, our estimated noise floor from known systematic error sources is only 9 ppm per visit. We do however urge caution as unknown systematic error sources could be present in flight and will only be measurable on astrophysical sources like quiescent stars. We find that reciprocity failure may introduce a perennial instrument offset at the 40 ppm level, so corrections may be needed when stitching together a multi-instrument multi-observatory spectrum over wide wavelength ranges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا