Do you want to publish a course? Click here

Discrete fragmentation systems in weighted $ell^1$ spaces

140   0   0.0 ( 0 )
 Added by Matthias Langer
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We investigate an infinite, linear system of ordinary differential equations that models the evolution of fragmenting clusters. We assume that each cluster is composed of identical units (monomers) and we allow mass to be lost, gained or conserved during each fragmentation event. By formulating the initial-value problem for the system as an abstract Cauchy problem (ACP), posed in an appropriate weighted $ell^1$ space, and then applying perturbation results from the theory of operator semigroups, we prove the existence and uniqueness of physically relevant, classical solutions for a wide class of initial cluster distributions. Additionally, we establish that it is always possible to identify a weighted $ell^1$ space on which the fragmentation semigroup is analytic, which immediately implies that the corresponding ACP is well posed for any initial distribution belonging to this particular space. We also investigate the asymptotic behaviour of solutions, and show that, under appropriate restrictions on the fragmentation coefficients, solutions display the expected long-term behaviour of converging to a purely monomeric steady state. Moreover, when the fragmentation semigroup is analytic, solutions are shown to decay to this steady state at an explicitly defined exponential rate.



rate research

Read More

If alpha and beta are countable ordinals such that beta eq 0, denote by tilde{T}_{alpha,beta} the completion of $c_{00}$ with respect to the implicitly defined norm ||x|| = max{||x||_{c_{0}}, 1/2 sup sum_{i=1}^{j}||E_{i}x||}, where the supremum is taken over all finite subsets E_{1},...,E_{j} of $mathbb{N}$ such that $E_{1}<...<E_{j}$ and {min E_{1},...,min E_{j}} in S_beta. It is shown that the Bourgain $ell^{1}$-index of tilde{T}_{alpha,beta} is omega^{alpha+beta.omega}. In particular, if alpha =omega^{alpha_{1}}. m_{1}+...+omega^{alpha_{n}}. m_{n} in Cantor normal form and alpha_{n} is not a limit ordinal, then there exists a Banach space whose ell^{1}-index is omega^{alpha}.
We investigate the existence of higher order ell^1-spreading models in subspaces of mixed Tsirelson spaces. For instance, we show that the following conditions are equivalent for the mixed Tsirelson space X=T[(theta _n,S_n)_{n=1}^{infty}] (1)Every block subspace of $X$ contains an ell^1-S_{omega}-spreading model, (2)The Bourgain ell^1-index I_b(Y) = I(Y) > omega^{omega} for any block subspace Y of X, (3)lim_mlimsup_ntheta_{m+n}/theta_n > 0 and every block subspace Y of X contains a block sequence equivalent to a subsequence of the unit vector basis of X. Moreover, if one (and hence all) of these conditions holds, then X is arbitrarily distortable.
Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study Arens regularity and isomorphism to operator algebras for them. We also examine our results on three classes of discrete weighted hypergroups constructed by conjugacy classes of FC groups, the dual space of compact groups, and hypergroup structure defined by orthogonal polynomials. We observe some unexpected examples regarding Arens regularity and operator isomorphisms of weighted hypergroup algebras.
197 - A. I. Tyulenev 2015
A complete description of traces on $mathbb{R}^{n}$ of functions from the weighted Sobolev space $W^{l}_{1}(mathbb{R}^{n+1},gamma)$, $l in mathbb{N}$, with weight $gamma in A^{rm loc}_{1}(mathbb{R}^{n+1})$ is obtained. In the case $l=1$ the proof of the trace theorems is based on a~special nonlinear algorithm for constructing a~system of tilings of the space~$mathbb R^n$. As the trace of the space $W^1_1(mathbb R^{n+1},gamma)$ we have the new function space $Z({gamma_{k,m}})$.
We study weighted $(PLB)$-spaces of ultradifferentiable functions defined via a weight function (in the sense of Braun, Meise and Taylor) and a weight system. We characterize when such spaces are ultrabornological in terms of the defining weight system. This generalizes Grothendiecks classical result that the space $mathcal{O}_M$ of slowly increasing smooth functions is ultrabornological to the context of ultradifferentiable functions. Furthermore, we determine the multiplier spaces of Gelfand-Shilov spaces and, by using the above result, characterize when such spaces are ultrabornological. In particular, we show that the multiplier space of the space of Fourier ultrahyperfunctions is ultrabornological, whereas the one of the space of Fourier hyperfunctions is not.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا