Do you want to publish a course? Click here

Weighted discrete hypergroups

222   0   0.0 ( 0 )
 Added by Mahmood Alaghmandan
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study Arens regularity and isomorphism to operator algebras for them. We also examine our results on three classes of discrete weighted hypergroups constructed by conjugacy classes of FC groups, the dual space of compact groups, and hypergroup structure defined by orthogonal polynomials. We observe some unexpected examples regarding Arens regularity and operator isomorphisms of weighted hypergroup algebras.



rate research

Read More

In this paper, we characterize hypercyclic sequences of weighted translation operators on an Orlicz space in the context of locally compact hypergroups.
129 - Ahmadreza Azimifard 2009
Let $K$ denote a locally compact commutative hypergroup, $L^1(K)$ the hypergroup algebra, and $alpha$ a real-valued hermitian character of $K$. We show that $K$ is $alpha$-amenable if and only if $L^1(K)$ is $alpha$-left amenable. We also consider the $alpha$-amenability of hypergroup joins and polynomial hypergroups in several variables as well as a single variable.
We investigate an infinite, linear system of ordinary differential equations that models the evolution of fragmenting clusters. We assume that each cluster is composed of identical units (monomers) and we allow mass to be lost, gained or conserved during each fragmentation event. By formulating the initial-value problem for the system as an abstract Cauchy problem (ACP), posed in an appropriate weighted $ell^1$ space, and then applying perturbation results from the theory of operator semigroups, we prove the existence and uniqueness of physically relevant, classical solutions for a wide class of initial cluster distributions. Additionally, we establish that it is always possible to identify a weighted $ell^1$ space on which the fragmentation semigroup is analytic, which immediately implies that the corresponding ACP is well posed for any initial distribution belonging to this particular space. We also investigate the asymptotic behaviour of solutions, and show that, under appropriate restrictions on the fragmentation coefficients, solutions display the expected long-term behaviour of converging to a purely monomeric steady state. Moreover, when the fragmentation semigroup is analytic, solutions are shown to decay to this steady state at an explicitly defined exponential rate.
Conformal inclusions of chiral conformal field theories, or more generally inclusions of quantum field theories, are described in the von Neumann algebraic setting by nets of subfactors, possibly with infinite Jones index if one takes non-rational theories into account. With this situation in mind, we study in a purely subfactor theoretical context a certain class of braided discrete subfactors with an additional commutativity constraint, that we call locality, and which corresponds to the commutation relations between field operators at space-like distance in quantum field theory. Examples of subfactors of this type come from taking a minimal action of a compact group on a factor and considering the fixed point subalgebra. We show that to every irreducible local discrete subfactor $mathcal{N}subsetmathcal{M}$ of type ${I!I!I}$ there is an associated canonical compact hypergroup (an invariant for the subfactor) which acts on $mathcal{M}$ by unital completely positive (ucp) maps and which gives $mathcal{N}$ as fixed points. To show this, we establish a duality pairing between the set of all $mathcal{N}$-bimodular ucp maps on $mathcal{M}$ and a certain commutative unital $C^*$-algebra, whose spectrum we identify with the compact hypergroup. If the subfactor has depth 2, the compact hypergroup turns out to be a compact group. This rules out the occurrence of compact emph{quantum} groups acting as global gauge symmetries in local conformal field theory.
166 - Ahmadreza Azimifard 2008
Let $UC(K)$ denote the Banach space of all bounded uniformly continuous functions on a hypergroup $K$. The main results of this article concern on the $alpha$-amenability of $UC(K)$ and quotients and products of hypergroups. It is also shown that a Sturm-Liouville hypergroup with a positive index is $alpha$-amenable if and only if $alpha=1$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا