Do you want to publish a course? Click here

ADC Nonlinearity Correction for the MAJORANA DEMONSTRATOR

82   0   0.0 ( 0 )
 Added by Ping-Han Chu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Imperfections in analog-to-digital conversion (ADC) cannot be ignored when signal digitization requirements demand both wide dynamic range and high resolution, as is the case for the Majorana Demonstrator 76Ge neutrinoless double beta decay search. Enabling the experiments high-resolution spectral analysis and efficient pulse shape discrimination required careful measurement and correction of ADC nonlinearites. A simple measurement protocol was developed that did not require sophisticated equipment or lengthy data taking campaigns. A slope-dependent hysteresis was observed and characterized. A correction applied to digitized waveforms prior to signal processing reduced the differential and integral nonlinearites by an order of magnitude, eliminating these as dominant contributions to the systematic energy uncertainty at the double-beta decay Q value.



rate research

Read More

146 - C. Cuesta , N. Abgrall , E. Aguayo 2014
The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.
The MAJORANA Collaboration is constructing a system containing 44 kg of high-purity Ge (HPGe) detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale to ~15 meV. To realize this, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/(ROI-t-y) in the 4 keV region of interest (ROI) around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials and analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements. Preliminary background results obtained during the engineering runs of the Demonstrator are presented.
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a ton-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and $^{76}textrm{Ge}$-enriched germanium detectors totaling 44.1 kg (29.7 kg enriched detectors), located at the 4850 level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Data taken with this setup since summer 2015 at different construction stages of the experiment show a clear reduction of the observed background index around the ROI for $0 ubetabeta$-decay search due to improvements in shielding. We discuss the statistical approaches to search for a $0 ubetabeta$-signal and derive the physics sensitivity for an expected exposure of $10,textrm{kg}{cdot}textrm{y}$ from enriched detectors using a profile likelihood based hypothesis test in combination with toy Monte Carlo data.
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg 76Ge and 15 kg natGe) to search for neutrinoless double beta decay in Ge-76. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, is already in progress.
The MAJORANA Collaboration is constructing the MAJORANA Demonstrator, an ultra-low background, 40-kg modular high purity Ge detector array to search for neutrinoless double-beta decay in Ge. In view of the next generation of tonne-scale Ge-based neutrinoless double-beta decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The current status of the Demonstrator is discussed, as are plans for its completion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا