No Arabic abstract
This paper studies the extreme dependencies between energy, agriculture and metal commodity markets, with a focus on local co-movements, allowing the identification of asymmetries and changing trend in the degree of co-movements. More precisely, starting from a non-parametric mixture copula, we use a novel copula-based local Kendalls tau approach to measure nonlinear local dependence in regions. In all pairs of commodity indexes, we find increased co-movements in extreme situations, a stronger dependence between energy and other commodity markets at lower tails, and a V-type local dependence for the energy-metal pairs. The three-dimensional Kendalls tau plot for upper tails in quantiles shows asymmetric co-movements in the energy-metal pairs, which tend to become negative at peak returns. Therefore, we show that the energy market can offer diversification solutions for risk management in the case of extreme bull market events.
In this paper, we propose a methodology based on piece-wise homogeneous Markov chain for credit ratings and a multivariate model of the credit spreads to evaluate the financial risk in European Union (EU). Two main aspects are considered: how the financial risk is distributed among the European countries and how large is the value of the total risk. The first aspect is evaluated by means of the expected value of a dynamic entropy measure. The second one is solved by computing the evolution of the total credit spread over time. Moreover, the covariance between countries total spread allows understand any contagions in EU. The methodology is applied to real data of 24 countries for the three major agencies: Moodys, Standard and Poors, and Fitch. Obtained results suggest that both the financial risk inequality and the value of the total risk increase over time at a different rate depending on the rating agency and that the dependence structure is characterized by a strong correlation between most of European countries.
Stationary and ergodic time series can be constructed using an s-vine decomposition based on sets of bivariate copula functions. The extension of such processes to infinite copula sequences is considered and shown to yield a rich class of models that generalizes Gaussian ARMA and ARFIMA processes to allow both non-Gaussian marginal behaviour and a non-Gaussian description of the serial partial dependence structure. Extensions of classical causal and invertible representations of linear processes to general s-vine processes are proposed and investigated. A practical and parsimonious method for parameterizing s-vine processes using the Kendall partial autocorrelation function is developed. The potential of the resulting models to give improved statistical fits in many applications is indicated with an example using macroeconomic data.
The dynamics of financial markets are driven by the interactions between participants, as well as the trading mechanisms and regulatory frameworks that govern these interactions. Decision-makers would rather not ignore the impact of other participants on these dynamics and should employ tools and models that take this into account. To this end, we demonstrate the efficacy of applying opponent-modeling in a number of simulated market settings. While our simulations are simplified representations of actual market dynamics, they provide an idealized playground in which our techniques can be demonstrated and tested. We present this work with the aim that our techniques could be refined and, with some effort, scaled up to the full complexity of real-world market scenarios. We hope that the results presented encourage practitioners to adopt opponent-modeling methods and apply them online systems, in order to enable not only reactive but also proactive decisions to be made.
In mathematical finance and other applications of stochastic processes, it is frequently the case that the characteristic function may be known but explicit forms for density functions are not available. The simulation of any distribution is greatly facilitated by a knowledge of the quantile function, by which uniformly distributed samples may be converted to samples of the given distribution. This article analyzes the calculation of a quantile function direct from the characteristic function of a probability distribution, without explicit knowledge of the density. We form a non-linear integro-differential equation that despite its complexity admits an iterative solution for the power series of the quantile about the median. We give some examples including tail models and show how to generate C-code for examples.
Since decades, the data science community tries to propose prediction models of financial time series. Yet, driven by the rapid development of information technology and machine intelligence, the velocity of todays information leads to high market efficiency. Sound financial theories demonstrate that in an efficient marketplace all information available today, including expectations on future events, are represented in today prices whereas future price trend is driven by the uncertainty. This jeopardizes the efforts put in designing prediction models. To deal with the unpredictability of financial systems, todays portfolio management is largely based on the Markowitz framework which puts more emphasis in the analysis of the market uncertainty and less in the price prediction. The limitation of the Markowitz framework stands in taking very strong ideal assumptions about future returns probability distribution. To address this situation we propose PAGAN, a pioneering methodology based on deep generative models. The goal is modeling the market uncertainty that ultimately is the main factor driving future trends. The generative model learns the joint probability distribution of price trends for a set of financial assets to match the probability distribution of the real market. Once the model is trained, a portfolio is optimized by deciding the best diversification to minimize the risk and maximize the expected returns observed over the execution of several simulations. Applying the model for analyzing possible futures, is as simple as executing a Monte Carlo simulation, a technique very familiar to finance experts. The experimental results on different portfolios representing different geopolitical areas and industrial segments constructed using real-world public data sets demonstrate promising results.