No Arabic abstract
Photonic cavities are valued in current research owing to the multitude of linear and nonlinear effects arising from densely confined light. Cavity designs consisting of low loss dielectric materials can achieve significant light confinement, competitive with other schools of cavity design such as plasmonics. However, the basic concepts in all dielectric photonics such as anapole resonances in nanodisks have been primarily studied in high index materials such as WS2 and Si. Without additional measures, low index dielectric nanodisks struggle to achieve similar levels of light confinement. Here, we present fabricable design space for higher confinement in a low index dielectric cavity by incorporating the extensively studied, isolated dielectric nanodisk into broader host structures. In particular, we focus on hexagonal boron nitride (hBN), a novel dielectric 2D material with bright, room temperature single photon emitters and refractive indices of 2.1 and 1.8 in the inplane and out-of-plane directions. Due to hBNs potential as a quantum light source, we characterise our cavities by their achievable Purcell factors at the anapole resonance. The effects of the supporting structures on the cavity resonances include boosts to the Purcell factor by as much as three-fold to a maximum observed factor of 6.2.
The Fano resonance is a widespread wave scattering phenomenon associated with a peculiar asymmetric and ultra-sharp line shape, which has found applications in a large variety of prominent optical devices. While its substantial sensitivity to geometrical and environmental changes makes it the cornerstone of efficient sensors, it also renders the practical realization of Fano-based systems extremely challenging. Here, we introduce the concept of topological Fano resonance, whose ultra-sharp asymmetric line shape is guaranteed by design and protected against geometrical imperfections, yet remaining sensitive to external parameters. We report the experimental observation of such resonances in an acoustic system, and demonstrate their inherent robustness to geometrical disorder. Such topologically-protected Fano resonances, which can also be found in microwave, optical and plasmonic systems, open up exciting frontiers for the generation of various reliable wave-based devices including low-threshold lasers, perfect absorbers, ultrafast switches or modulators, and highly accurate interferometers, by circumventing the performance degradations caused by inadvertent fabrication flaws.
Materials with a zero refractive index support electromagnetic modes that exhibit stationary phase profiles. While such materials have been realized across the visible and near-infrared spectral range, radiative and dissipative optical losses have hindered their development. We reduce losses in zero-index, on-chip photonic crystals by introducing high-Q resonances via resonance-trapped and symmetry-protected states. Using these approaches, we experimentally obtain quality factors of 2.6*10^3 and 7.8*10^3 at near-infrared wavelengths, corresponding to an order-of-magnitude reduction in propagation loss over previous designs. Our work presents a viable approach to fabricate zero-index on-chip nanophotonic devices with low-loss.
We propose wideband bandpass filters based on multipole resonances of spoof localized surface plasmons (SLSPs). The resonance characteristics and geometric tunability of SLSPs are investigated under microstrip excitations. Strong coupling with interlayer microstrip lines is proposed to join discrete multipole resonances into a continuous and flat passband. The SLSP filters exhibit wide passbands in compact sizes and well-balanced shapes, while holding satisfactory spurious rejection bands, group delays, and geometric tunability. This work exposes the SLSPs application potential in filters as novel resonators.
Reconfigurable photonic systems featuring minimal power consumption are crucial for integrated optical devices in real-world technology. Current active devices available in foundries, however, use volatile methods to modulate light, requiring a constant supply of power and significant form factors. Essential aspects to overcoming these issues are the development of nonvolatile optical reconfiguration techniques which are compatible with on-chip integration with different photonic platforms and do not disrupt their optical performances. In this paper, a solution is demonstrated using an optoelectronic framework for nonvolatile tunable photonics that employs undoped-graphene microheaters to thermally and reversibly switch the optical phase-change material Ge$_2$Sb$_2$Se$_4$Te$_1$ (GSST). An in-situ Raman spectroscopy method is utilized to demonstrate, in real-time, reversible switching between four different levels of crystallinity. Moreover, a 3D computational model is developed to precisely interpret the switching characteristics, and to quantify the impact of current saturation on power dissipation, thermal diffusion, and switching speed. This model is used to inform the design of nonvolatile active photonic devices; namely, broadband Si$_3$N$_4$ integrated photonic circuits with small form-factor modulators and reconfigurable metasurfaces displaying 2$pi$ phase coverage through neural-network-designed GSST meta-atoms. This framework will enable scalable, low-loss nonvolatile applications across a diverse range of photonics platforms.
Manipulating the excitation of resonant electric and magnetic multipole moments in structured dielectric media has unlocked many sophisticated electromagnetic functionalities. This article demonstrates the experimental realization of a broadband Huygens source. This Huygens source consists of a spherical particle that exhibits a well-defined forward-scattering pattern across more than an octave-spanning spectral band at GHz frequencies, where the scattering in the entire backward hemisphere is suppressed. Two different low-index nonmagnetic spheres are studied that differ in their permittivity. This causes them to offer a different shape for the forward-scattering pattern. The theoretical understanding of this broadband feature is based on the approximate equality of the resonant electric and magnetic multipole moments in both amplitude and phase in low permittivity spheres. This is a key condition to approximate the electromagnetic duality symmetry which, together with the spherical symmetry, suppresses the backscattering. With such a configuration, broadband Huygens sources can be designed even if magnetic materials are unavailable. This article provides guidelines for designing broadband Huygens sources using low-index spheres that could be valuable to a plethora of applications.