Do you want to publish a course? Click here

Spectral characterization of non-Gaussian quantum noise: Keldysh approach and application to photon shot noise

70   0   0.0 ( 0 )
 Added by Yuxin Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Having accurate tools to describe non-classical, non-Gaussian environmental fluctuations is crucial for designing effective quantum control protocols and understanding the physics of underlying quantum dissipative environments. We show how the Keldysh approach to quantum noise characterization can be usefully employed to characterize frequency-dependent noise, focusing on the quantum bispectrum (i.e., frequency-resolved third cumulant). Using the paradigmatic example of photon shot noise fluctuations in a driven bosonic mode, we show that the quantum bispectrum can be a powerful tool for revealing distinctive non-classical noise properties, including an effective breaking of detailed balance by quantum fluctuations. The Keldysh-ordered quantum bispectrum can be directly accessed using existing noise spectroscopy protocols.



rate research

Read More

With continuing improvements on the quality of fabricated quantum devices, it becomes increasingly crucial to analyze noisy quantum process in greater details such as characterizing the non-Markovianity in a quantitative manner. In this work, we propose an experimental protocol, termed Spectral Transfer Tensor Maps (SpecTTM), to accurately predict the RHP non-Markovian measure of any Pauli channels without state-preparation and measurement (SPAM) errors. In fact, for Pauli channels, SpecTTM even allows the reconstruction of highly-precised noise power spectrum for qubits. At last, we also discuss how SpecTTM can be useful to approximately characterize non-Markovianity of non-Pauli channels via Pauli twirling in an optimal basis.
Visible and infra-red light emitted at a Ag-Ag(111) junction has been investigated from tunneling to single atom contact conditions with a scanning tunneling microscope. The light intensity varies in a highly nonlinear fashion with the conductance of the junction and exhibits a minimum at conductances close to the conductance quantum. The data are interpreted in terms of current noise at optical frequencies, which is characteristic of partially open transport channels.
We present the first measurements of the third moment of the voltage fluctuations in a conductor. This technique can provide new and complementary information on the electronic transport in conducting systems. The measurement was performed on non-superconducting tunnel junctions as a function of voltage bias, for various temperatures and bandwidths up to 1GHz. The data demonstrate the significant effect of the electromagnetic environment of the sample.
We measure the fundamental noise processes associated with a continuous linear position measurement of a micromechanical membrane incorporated in a microwave cavity optomechanical circuit. We observe the trade-off between the two fundamental sources of noises that enforce the standard quantum limit: the measurement imprecision and radiation-pressure backaction from photon shot noise. We demonstrate that the quantum backaction of the measurement can overwhelm the intrinsic thermal motion by 24 dB, entering a new regime for cavity optomechanical systems.
We give necessary and sufficient conditions for a Gaussian quantum channel to have a dilation involving a passive, i.e., number-preserving unitary. We then establish a normal form of such channels: any passively dilatable channel is the result of applying passive unitaries to the input and output of a Gaussian additive channel. The latter combine the state of the system with that of the environment by means of a multi-mode beamsplitter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا