Do you want to publish a course? Click here

Plasma Lenses: Possible alternative OMD at the ILC

253   0   0.0 ( 0 )
 Added by Andriy Ushakov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the baseline design of the International Linear Collider (ILC) an undulator-based source is foreseen for the positron source in order to match the physics requirements. The recently chosen first energy stage with sqrt(s)=250 GeV requires high luminosity and imposes an effort for all positron source designs at high-energy colliders. In this paper we perform a simulation study and adopt the new technology of plasma lenses to capture the positrons generated by the undulator photons and to create the required high luminosity positron beam.



rate research

Read More

In these proceedings a novel approach to deal with the beam-induced effects in luminosity measurement is presented. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainties can be reduced to the permille level independently of a precision with which the beam parameters are known. Specific event selection combined with the corrective methods we introduce, leads to the systematic uncertainty from the beam-induced effects to be at a few permille level in the peak region above the 80% of the nominal centre-of-mass energies at ILC.
In this paper we describe a method of luminosity measurement at the future linear collider ILC that estimates and corrects for the impact of the dominant sources of systematic uncertainty originating from the beam-induced effects and the background from physics processes. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainty is reduced to a permille independently of the precision with which the beam parameters are known. With the specific event selection, different from the isolation cuts based on topology of the signal used at LEP, combined with the corrective methods we introduce, the overall systematic uncertainty in the peak region above 80% of the nominal center-of-mass energy meets the physics requirements to be at the few permille level at all ILC energies.
Active plasma lensing is a promising technology for compact focusing of particle beams that has seen a recent surge of interest. While these lenses can provide strong focusing gradients of order kT/m and focusing in both transverse planes, there are limitations from nonlinear aberrations, causing emittance growth in the beams being focused. One cause of such aberrations is beam-driven plasma wakefields, present if the beam density is sufficiently high. We develop simple, but powerful analytic formulas for the effective focusing gradient from these wakefields, and use this to set limits on which parts of the beam and plasma parameter space permits distortion-free use of active plasma lenses. It is concluded that the application of active plasma lenses to conventional and plasma-based linear colliders may prove very challenging, except perhaps in the final focus system, unless the typical discharge currents used are dramatically increased, and that in general these lenses are better suited for accelerator applications with lower beam intensities.
140 - V. Kovalenko 2012
In order to achieve the physics goals of future Linear Colliders, it is important that electron and positron beams are polarized. The baseline design at the International Linear Collider (ILC) foresees an e+ source based on helical undulator. Such a source provides high luminosity and polarizations. The positron source planned for ILC is based on a helical undulator system and can deliver a positron polarization of 60%. To ensure that no significant polarization is lost during the transport of the e- and e+ beams from the source to the interaction region, precise spin tracking has to be included in all transport elements which can contribute to a loss of polarization, i.e. the initial accelerating structures, the damping rings, the spin rotators, the main linac and the beam delivery system. In particular, the dynamics of the polarized positron beam is required to be investigated. In the talk recent results of positron spin tracking simulation at the source are presented. The positron yield and polarization are also discussed depending on the geometry of source elements.
76 - Khaled Alharbi 2019
The positron source of the International Linear Collider is based on a superconducting helical undulator passed by the high-energy electron beam to generate photons which hit a conversion target. Since the photons are circularly polarized the resulting positron beam is polarized. At ILC250, the full undulator is needed to produce the required number of positrons. To keep the power deposition in the undulator walls below the acceptable limit of 1W/m, photon masks must be inserted in the undulator line. The photon mask design requires a detailed study of the power deposition in the walls and masks. This paper describes the power deposition in the undulator wall due to synchrotron radiation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا