No Arabic abstract
We report the growth of noncollinear antiferromagnetic (AFM) Mn$_3$Ni$_{0.35}$Cu$_{0.65}$N films and the orientation-dependent anomalous Hall effect (AHE) of (001) and (111) films due to nonzero Berry curvature. We found that post-annealing at 500$^circ$C can significantly improve the AHE signals, though using the appropriate post-annealing conditions is important. The AHE and magnetization loops show sharp flipping at the coercive field in (111) films, while (001) films are hard to saturate by a magnetic field. The anomalous Hall conductivity of (111) films is an order of magnitude larger than that of (001) films. The present results provide not only a better understanding of the AHE in Mn$_3X$N systems but also further opportunities to study the unique phenomena related to noncollinear AFM.
Magnetotransport is at the center of the spintronics. Mn3Sn, an antiferromagnet that has a noncollinear 120{deg} spin order, exhibits large anomalous Hall effect (AHE) at room temperature. But such a behavior has been remained elusive in Mn3Sn films. Here we report the observation of robust AHE up to room temperature in quasi-epitaxial Mn3Sn thin films, prepared by magnetron sputtering. The growth of both (11-20)- and (0001)-oriented Mn3Sn films provides a unique opportunity for comparing AHE in three different measurement configurations. When the magnetic field is swept along (0001) plane, such as the direction of [01-10] and [2-1-10] the films show comparatively higher anomalous Hall conductivity than its perpendicular counterpart ([0001]), irrespective of their respectively orthogonal current along [0001] or [01-10]. A quite weak ferromagnetic moment of 3 emu/cm^3 is obtained in (11-20)-oriented Mn3Sn films, guaranteeing the switching of the Hall signals with magnetization reversal. Our finding would advance the integration of Mn3Sn in antiferromagnetic spintronics.
Noncollinear antiferromagnets (AFMs) have recently attracted a lot of attention owing to the potential emergence of exotic spin orders on geometrically frustrated lattices, which can be characterized by corresponding spin chiralities. By performing first-principles density functional calculations together with group-theory analysis and tight-binding modelling, here we systematically study the spin-order dependent anomalous Hall effect (AHE) and magneto-optical effect (MOE) in representative noncollinear AFMs Mn$_{3}X$N ($X$ = Ga, Zn, Ag, and Ni). The symmetry-related tensor shape of the intrinsic anomalous Hall conductivity (IAHC) for different spin orders is determined by analyzing the relevant magnetic point groups. We show that while only the ${xy}$ component of the IAHC tensor is nonzero for right-handed spin chirality, all other elements, $sigma_{xy}$, $sigma_{yz}$, and $sigma_{zx}$, are nonvanishing for a state with left-handed spin chirality owing to lowering of the symmetry. Our tight-binding arguments reveal that the magnitude of IAHC relies on the details of the band structure and that $sigma_{xy}$ is periodically modulated as the spin rotates in-plane. The IAHC obtained from first principles is found to be rather large, e.g., it amounts to 359 S/cm in Mn$_{3}$AgN. By extending our analysis to finite frequencies, we calculate the optical isotropy [$sigma_{xx}(omega)approxsigma_{yy}(omega)approxsigma_{zz}(omega)$] and the magneto-optical anisotropy [$sigma_{xy}(omega) eqsigma_{yz}(omega) eqsigma_{zx}(omega)$] of Mn$_{3}X$N. We argue that the spin-order dependent AHE and MOE are indispensable in detecting complex spin structures in noncollinear AFMs.
We report the anomalous Hall effect (AHE) in antiperovskite Mn$_{3}$NiN with substantial doping of Cu on the Ni site (i.e. Mn$_{3}$Ni$_{1-x}$Cu$_{x}$N), which stabilizes a noncollinear antiferromagnetic (AFM) order compatible with the AHE. Observed on both sintered polycrystalline pieces and single crystalline films, the AHE does not scale with the net magnetization, contrary to the conventional ferromagnetic case. The existence of the AHE is explained through symmetry analysis based on the $Gamma_{rm 4g}$ AFM order in Cu doped Mn$_{3}$NiN. DFT calculations of the intrinsic contribution to the AHE reveal the non-vanishing Berry curvature in momentum space due to the noncollinear magnetic order. Combined with other attractive properties, antiperovskite Mn$_{3}$AN system offers great potential in AFM spintronics.
Titanium nitride (TiN) is a paradigm of refractory transition metal nitrides with great potential in vast applications. Generally, the plasmonic performance of TiN can be tuned by oxidation, which was thought to be only temperature-, oxygen partial pressure-, and time-dependent. Regarding the role of crystallographic orientation in the oxidation and resultant optical properties of TiN films, little is known thus far. Here we reveal that both the oxidation resistance behavior and the plasmonic performance of epitaxial TiN films follow the order of (001) < (110) < (111). The effects of crystallographic orientation on the lattice constants, optical properties, and oxidation levels of epitaxial TiN films have been systematically studied by combined high-resolution X-ray diffraction, spectroscopic ellipsometry, X-ray absorption spectroscopy, and X-ray photoemission spectroscopy. To further understand the role of crystallographic orientation in the initial oxidation process of TiN films, density-functional-theory calculations are carried out, indicating the energy cost of oxidation is (001) < (110) < (111), consistent with the experiments. The superior endurance of the (111) orientation against mild oxidation can largely alleviate the previously stringent technical requirements for the growth of TiN films with high plasmonic performance. The crystallographic orientation can also offer an effective controlling parameter to design TiN-based plasmonic devices with desired peculiarity, e.g., superior chemical stability against mild oxidation or large optical tunability upon oxidation.
The anomalous Nernst effect (ANE) - the generation of a transverse electric voltage by a longitudinal heat current in conducting ferromagnets or antiferromagnets - is an appealing approach for thermoelectric power generation in spin caloritronics. The ANE in antiferromagnets is particularly convenient for the fabrication of highly efficient and densely integrated thermopiles as lateral configurations of thermoelectric modules increase the coverage of heat source without suffering from the stray fields that are intrinsic to ferromagnets. In this work, using first-principles calculations together with a group theory analysis, we systematically investigate the spin order-dependent ANE in noncollinear antiferromagnetic Mn-based antiperovskite nitrides Mn$_{3}X$N ($X$ = Ga, Zn, Ag, and Ni). The ANE in Mn$_{3}X$N is forbidden by symmetry in the R1 phase but amounts to its maximum value in the R3 phase. Among all Mn$_{3}X$N compounds, Mn$_{3}$NiN presents the most significant anomalous Nernst conductivity of 1.80 AK$^{-1}$m$^{-1}$ at 200 K, which can be further enhanced if strain, electric, or magnetic fields are applied. The ANE in Mn$_{3}$NiN, being one order of magnitude larger than that in the famous Mn$_{3}$Sn, is the largest one discovered in antiferromagnets so far. The giant ANE in Mn$_{3}$NiN originates from the sharp slope of the anomalous Hall conductivity at the Fermi energy, which can be understood well from the Mott relation. Our findings provide a novel host material for realizing antiferromagnetic spin caloritronics which promises exciting applications in energy conversion and information processing.