No Arabic abstract
While robot learning has demonstrated promising results for enabling robots to automatically acquire new skills, a critical challenge in deploying learning-based systems is scale: acquiring enough data for the robot to effectively generalize broadly. Imitation learning, in particular, has remained a stable and powerful approach for robot learning, but critically relies on expert operators for data collection. In this work, we target this challenge, aiming to build an imitation learning system that can continuously improve through autonomous data collection, while simultaneously avoiding the explicit use of reinforcement learning, to maintain the stability, simplicity, and scalability of supervised imitation. To accomplish this, we cast the problem of imitation with autonomous improvement into a multi-task setting. We utilize the insight that, in a multi-task setting, a failed attempt at one task might represent a successful attempt at another task. This allows us to leverage the robots own trials as demonstrations for tasks other than the one that the robot actually attempted. Using an initial dataset of multi-task demonstration data, the robot autonomously collects trials which are only sparsely labeled with a binary indication of whether the trial accomplished any useful task or not. We then embed the trials into a learned latent space of tasks, trained using only the initial demonstration dataset, to draw similarities between various trials, enabling the robot to achieve one-shot generalization to new tasks. In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement, and in contrast to reinforcement learning algorithms, our method can effectively improve from sparse, task-agnostic reward signals.
We propose an imitation learning system for autonomous driving in urban traffic with interactions. We train a Behavioral Cloning~(BC) policy to imitate driving behavior collected from the real urban traffic, and apply the data aggregation algorithm to improve its performance iteratively. Applying data aggregation in this setting comes with two challenges. The first challenge is that it is expensive and dangerous to collect online rollout data in the real urban traffic. Creating similar traffic scenarios in simulator like CARLA for online rollout collection can also be difficult. Instead, we propose to create a weak simulator from the training dataset, in which all the surrounding vehicles follow the data trajectory provided by the dataset. We find that the collected online data in such a simulator can still be used to improve BC policys performance. The second challenge is the tedious and time-consuming process of human labelling process during online rollout. To solve this problem, we use an A$^*$ planner as a pseudo-expert to provide expert-like demonstration. We validate our proposed imitation learning system in the real urban traffic scenarios. The experimental results show that our system can significantly improve the performance of baseline BC policy.
Dexterous manipulation has been a long-standing challenge in robotics. Recently, modern model-free RL has demonstrated impressive results on a number of problems. However, complex domains like dexterous manipulation remain a challenge for RL due to the poor sample complexity. To address this, current approaches employ expert demonstrations in the form of state-action pairs, which are difficult to obtain for real-world settings such as learning from videos. In this work, we move toward a more realistic setting and explore state-only imitation learning. To tackle this setting, we train an inverse dynamics model and use it to predict actions for state-only demonstrations. The inverse dynamics model and the policy are trained jointly. Our method performs on par with state-action approaches and considerably outperforms RL alone. By not relying on expert actions, we are able to learn from demonstrations with different dynamics, morphologies, and objects.
During retinal microsurgery, precise manipulation of the delicate retinal tissue is required for positive surgical outcome. However, accurate manipulation and navigation of surgical tools remain difficult due to a constrained workspace and the top-down view during the surgery, which limits the surgeons ability to estimate depth. To alleviate such difficulty, we propose to automate the tool-navigation task by learning to predict relative goal position on the retinal surface from the current tool-tip position. Given an estimated target on the retina, we generate an optimal trajectory leading to the predicted goal while imposing safety-related physical constraints aimed to minimize tissue damage. As an extended task, we generate goal predictions to various points across the retina to localize eye geometry and further generate safe trajectories within the estimated confines. Through experiments in both simulation and with several eye phantoms, we demonstrate that our framework can permit navigation to various points on the retina within 0.089mm and 0.118mm in xy error which is less than the humans surgeon mean tremor at the tool-tip of 0.180mm. All safety constraints were fulfilled and the algorithm was robust to previously unseen eyes as well as unseen objects in the scene. Live video demonstration is available here: https://youtu.be/n5j5jCCelXk
This paper proposes a life-long adaptive path tracking policy learning method for autonomous vehicles that can self-evolve and self-adapt with multi-task knowledge. Firstly, the proposed method can learn a model-free control policy for path tracking directly from the historical driving experience, where the property of vehicle dynamics and corresponding control strategy can be learned simultaneously. Secondly, by utilizing the life-long learning method, the proposed method can learn the policy with task-incremental knowledge without encountering catastrophic forgetting. Thus, with continual multi-task knowledge learned, the policy can iteratively adapt to new tasks and improve its performance with knowledge from new tasks. Thirdly, a memory evaluation and updating method is applied to optimize memory structure for life-long learning which enables the policy to learn toward selected directions. Experiments are conducted using a high-fidelity vehicle dynamic model in a complex curvy road to evaluate the performance of the proposed method. Results show that the proposed method can effectively evolve with continual multi-task knowledge and adapt to the new environment, where the performance of the proposed method can also surpass two commonly used baseline methods after evolving.
Control policies from imitation learning can often fail to generalize to novel environments due to imperfect demonstrations or the inability of imitation learning algorithms to accurately infer the experts policies. In this paper, we present rigorous generalization guarantees for imitation learning by leveraging the Probably Approximately Correct (PAC)-Bayes framework to provide upper bounds on the expected cost of policies in novel environments. We propose a two-stage training method where a latent policy distribution is first embedded with multi-modal expert behavior using a conditional variational autoencoder, and then fine-tuned in new training environments to explicitly optimize the generalization bound. We demonstrate strong generalization bounds and their tightness relative to empirical performance in simulation for (i) grasping diverse mugs, (ii) planar pushing with visual feedback, and (iii) vision-based indoor navigation, as well as through hardware experiments for the two manipulation tasks.