No Arabic abstract
Kernel-phase is a data analysis method based on a generalization of the notion of closure-phase invented in the context of interferometry, but that applies to well corrected diffraction dominated images produced by an arbitrary aperture. The linear model upon which it relies theoretically leads to the formation of observable quantities robust against residual aberrations. In practice, detection limits reported thus far seem to be dominated by systematic errors induced by calibration biases not sufficiently filtered out by the kernel projection operator. This paper focuses on the impact the initial modeling of the aperture has on these errors and introduces a strategy to mitigate them, using a more accurate aperture transmission model. The paper first uses idealized monochromatic simulations of a non trivial aperture to illustrate the impact modeling choices have on calibration errors. It then applies the outlined prescription to two distinct data-sets of images whose analysis has previously been published. The use of a transmission model to describe the aperture results in a significant improvement over the previous type of analysis. The thus reprocessed data-sets generally lead to more accurate results, less affected by systematic errors. As kernel-phase observing programs are becoming more ambitious, accuracy in the aperture description is becoming paramount to avoid situations where contrast detection limits are dominated by systematic errors. Prescriptions outlined in this paper will benefit any attempt at exploiting kernel-phase for high-contrast detection.
This paper is concerned with algorithms for calibration of direction dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of Direction Independent Effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth-Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured {em a priori}. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms which scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the Pointing SelfCal algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.
Sparse digital antenna arrays constitute a promising detection technique for future large-scale cosmic-ray observatories. It has recently been shown that this kind of instrumentation can provide a resolution of the energy and of the shower maximum on the level of other cosmic-ray detection methods. Due to the dominant geomagnetic nature of the air-shower radio emission in the traditional frequency band of 30 to 80 MHz, the amplitude and polarization of the radio signal strongly depend on the azimuth and zenith angle of the arrival direction. Thus, the estimation of the efficiency and subsequently of the aperture of an antenna array is more complex than for particle or Cherenkov-light detectors. We have built a new efficiency model based on utilizing a lateral distribution function as a shower model, and a probabilistic treatment of the detection process. The model is compared to the data measured by the Tunka Radio Extension (Tunka-Rex), a digital antenna array with an area of about 1 km$^2$ located in Siberia at the Tunka Advanced Instrument for Cosmic rays and Gamma Ray Astronomy (TAIGA). Tunka-Rex detects radio emission of air showers using trigger from air-Cherenkov and particle detectors. The present study is an essential step towards the measurement of the cosmic-ray flux with Tunka-Rex, and is important for radio measurements of air showers in general.
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 250-hour flight over Antarctica in December 2006 (BLAST06). As part of the calibration and pointing procedures, the red hypergiant star VY CMa was observed and used as the primary calibrator. Details of the overall BLAST06 calibration procedure are discussed. The 1-sigma absolute calibration is accurate to 10, 12, and 13% at the 250, 350, and 500 micron bands, respectively. The errors are highly correlated between bands resulting in much lower error for the derived shape of the 250-500 micron continuum. The overall pointing error is <5 rms for the 36, 42, and 60 beams. The performance of the optics and pointing systems is discussed.
We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope; allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics which are now being built. We describe non-sequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far field beam patterns which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.
Strong turbulence conditions create amplitude aberrations through the effects of near-field diffraction. When integrated over long optical path lengths, amplitude aberrations (seen as scintillation) can nullify local areas in the recorded image of a coherent beam, complicating the wavefront reconstruction process. To estimate phase aberrations experienced by a telescope beam control system in the presence of strong turbulence, the wavefront sensor (WFS) of an adaptive optics must be robust to scintillation. We have designed and built a WFS, which we refer to as a Fresnel sensor, that uses near-field diffraction to measure phase errors under moderate to strong turbulent conditions. Systematic studies of its sensitivity were performed with laboratory experiments using a point source beacon. The results were then compared to a Shack-Hartmann WFS (SHWFS). When the SHWFS experiences irradiance fade in the presence of moderate turbulence, the Fresnel WFS continues to routinely extract phase information. For a scintillation index of $S = 0.55$, we show that the Fresnel WFS offers a factor of $9times$ gain in sensitivity over the SHWFS. We find that the Fresnel WFS is capable of operating with extremely low light levels, corresponding to a signal-to-noise ratio of only $mbox{SNR}approx 2-3$ per pixel. Such a device is well-suited for coherent beam propagation, laser communications, remote sensing, and applications involving long optical path-lengths, site-lines along the horizon, and faint signals.