Do you want to publish a course? Click here

Good Subnetworks Provably Exist: Pruning via Greedy Forward Selection

64   0   0.0 ( 0 )
 Added by Mao Ye
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent empirical works show that large deep neural networks are often highly redundant and one can find much smaller subnetworks without a significant drop of accuracy. However, most existing methods of network pruning are empirical and heuristic, leaving it open whether good subnetworks provably exist, how to find them efficiently, and if network pruning can be provably better than direct training using gradient descent. We answer these problems positively by proposing a simple greedy selection approach for finding good subnetworks, which starts from an empty network and greedily adds important neurons from the large network. This differs from the existing methods based on backward elimination, which remove redundant neurons from the large network. Theoretically, applying the greedy selection strategy on sufficiently large {pre-trained} networks guarantees to find small subnetworks with lower loss than networks directly trained with gradient descent. Our results also apply to pruning randomly weighted networks. Practically, we improve prior arts of network pruning on learning compact neural architectures on ImageNet, including ResNet, MobilenetV2/V3, and ProxylessNet. Our theory and empirical results on MobileNet suggest that we should fine-tune the pruned subnetworks to leverage the information from the large model, instead of re-training from new random initialization as suggested in citet{liu2018rethinking}.



rate research

Read More

Structured pruning is an effective compression technique to reduce the computation of neural networks, which is usually achieved by adding perturbations to reduce network parameters at the cost of slightly increasing training loss. A more reasonable approach is to find a sparse minimizer along the flat minimum valley found by optimizers, i.e. stochastic gradient descent, which keeps the training loss constant. To achieve this goal, we propose the structured directional pruning based on orthogonal projecting the perturbations onto the flat minimum valley. We also propose a fast solver sDprun and further prove that it achieves directional pruning asymptotically after sufficient training. Experiments using VGG-Net and ResNet on CIFAR-10 and CIFAR-100 datasets show that our method obtains the state-of-the-art pruned accuracy (i.e. 93.97% on VGG16, CIFAR-10 task) without retraining. Experiments using DNN, VGG-Net and WRN28X10 on MNIST, CIFAR-10 and CIFAR-100 datasets demonstrate our method performs structured directional pruning, reaching the same minimum valley as the optimizer.
Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance degrade. Despite its effectiveness, existing regularization-based parameter pruning methods usually drive weights towards zero with large and constant regularization factors, which neglects the fragility of the expressiveness of CNNs, and thus calls for a more gentle regularization scheme so that the networks can adapt during pruning. To achieve this, we propose a new and novel regularization-based pruning method, named IncReg, to incrementally assign different regularization factors to different weights based on their relative importance. Empirical analysis on CIFAR-10 dataset verifies the merits of IncReg. Further extensive experiments with popular CNNs on CIFAR-10 and ImageNet datasets show that IncReg achieves comparable to even better results compared with state-of-the-arts. Our source codes and trained models are available here: https://github.com/mingsun-tse/caffe_increg.
Greedy algorithms are widely used for problems in machine learning such as feature selection and set function optimization. Unfortunately, for large datasets, the running time of even greedy algorithms can be quite high. This is because for each greedy step we need to refit a model or calculate a function using the previously selected choices and the new candidate. Two algorithms that are faster approximations to the greedy forward selection were introduced recently ([Mirzasoleiman et al. 2013, 2015]). They achieve better performance by exploiting distributed computation and stochastic evaluation respectively. Both algorithms have provable performance guarantees for submodular functions. In this paper we show that divergent from previously held opinion, submodularity is not required to obtain approximation guarantees for these two algorithms. Specifically, we show that a generalized concept of weak submodularity suffices to give multiplicative approximation guarantees. Our result extends the applicability of these algorithms to a larger class of functions. Furthermore, we show that a bounded submodularity ratio can be used to provide data dependent bounds that can sometimes be tighter also for submodular functions. We empirically validate our work by showing superior performance of fast greedy approximations versus several established baselines on artificial and real datasets.
Optimal selection of a subset of items from a given set is a hard problem that requires combinatorial optimization. In this paper, we propose a subset selection algorithm that is trainable with gradient-based methods yet achieves near-optimal performance via submodular optimization. We focus on the task of identifying a relevant set of sentences for claim verification in the context of the FEVER task. Conventional methods for this task look at sentences on their individual merit and thus do not optimize the informativeness of sentences as a set. We show that our proposed method which builds on the idea of unfolding a greedy algorithm into a computational graph allows both interpretability and gradient-based training. The proposed differentiable greedy network (DGN) outperforms discrete optimization algorithms as well as other baseline methods in terms of precision and recall.
Metric learning is an important family of algorithms for classification and similarity search, but the robustness of learned metrics against small adversarial perturbations is less studied. In this paper, we show that existing metric learning algorithms, which focus on boosting the clean accuracy, can result in metrics that are less robust than the Euclidean distance. To overcome this problem, we propose a novel metric learning algorithm to find a Mahalanobis distance that is robust against adversarial perturbations, and the robustness of the resulting model is certifiable. Experimental results show that the proposed metric learning algorithm improves both certified robust errors and empirical robust errors (errors under adversarial attacks). Furthermore, unlike neural network defenses which usually encounter a trade-off between clean and robust errors, our method does not sacrifice clean errors compared with previous metric learning methods. Our code is available at https://github.com/wangwllu/provably_robust_metric_learning.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا