We show the equivalence of the 2D Ising model to standard free Euclidean lattice fermions of the Wilson Majorana type. The equality of the loop representations for the partition functions of both systems is established exactly for finite lattices with well-defined boundary conditions. The honeycomb lattice is particularly simple in this context and therefore discussed first and only then followed by the more familiar square lattice case.
We investigate the Kondo effect with Wilson fermions. This is based on a mean-field approach for the chiral Gross-Neveu model including four-point interactions between a light Wilson fermion and a heavy fermion. For massless Wilson fermions, we demonstrate the appearance of the Kondo effect. We point out that there is a coexistence phase with both the light-fermion scalar condensate and Kondo condensate, and the critical chemical potentials of the scalar condensate are shifted by the Kondo effect. For negative-mass Wilson fermions, we find that the Kondo effect is favored near the parameter region realizing the Aoki phase. Our findings will be useful for understanding the roles of heavy impurities in Dirac semimetals, topological insulators, and lattice QCD simulations.
QCD is investigated at finite temperature using Wilson fermions in the fixed scale approach. A 2+1 flavor stout and clover improved action is used at four lattice spacings allowing for control over discretization errors. The light quark masses in this first study are fixed to heavier than physical values. The renormalized chiral condensate, quark number susceptibility and the Polyakov loop is measured and the results are compared with the staggered formulation in the fixed N_t approach. The Wilson results at the finest lattice spacing agree with the staggered results at the highest N_t.
We study the two-dimensional lattice Gross--Neveu model with Wilson twisted mass fermions in order to explore the phase structure in this setup. In particular, we investigate the behaviour of the phase transitions found earlier with standard Wilson fermions as a function of the twisted mass parameter $mu$. We find that qualitatively the dependence of the phase transitions on $mu$ is very similar to the case of lattice QCD.
We study the phase structure of imaginary chemical potential. We calculate the Polyakov loop using clover-improved Wilson action and renormalization improved gauge action. We obtain a two-state signals indicating the first order phase transition for $beta = 1.9, mu_I = 0.2618, kappa=0.1388$ on $8^3times 4$ lattice volume We also present a result of the matrix reduction formula for the Wilson fermion.
We present results of our ongoing determination of string breaking in full QCD with N_f=2 Wilson fermions. Our investigation of the fission of the static quark-antiquark string into a static-light meson-antimeson system is based on dynamical configurations of size 24^3 x 40 produced by the TxL collaboration. Combining various optimization methods we determine the matrix elements of the two-by-two system with so far unprecedented accuracy. The all-to-all light quark propagators occurring in the transition element are computed from eigenmodes of the Hermitian Wilson-Dirac matrix complemented by stochastic estimates in the orthogonal subspace. We observe a clear signature for level-splitting between ground state and excited potential. Thus, for the first time, string breaking induced by sea quarks is observed in a simulation of 4-dimensional lattice-QCD.